Skip to main content
Log in

Controlling the polymorphism of carbamazepine-saccharin cocrystals formed during antisolvent cocrystallization using kinetic parameters

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The cocrystal approach has been extensively investigated over the last decade as one of the most promising methods toward modifying the dissolution behavior of insoluble drug substances. This study demonstrates that the polymorphism of pharmaceutical cocrystalline powders prepared via antisolvent methods can be controlled using kinetic parameters. A carbamazepine-saccharin (CBZ-SAC) cocrystal was selected as a model drug in this study. This crystal was manufactured through a scaled-up antisolvent process with a total solution volume of 4.5 L. CBZ-SAC cocrystal crystalline powders were synthesized by adding 3 L of water as the antisolvent into 1.5 L of CBZ and SAC in methanol, whereby the antisolvent addition rate and the agitation speed were varied as the principal kinetic parameters. To investigate how cocrystallization proceeds under each condition, periodical sampling was combined with off-line characterization and in-line near-infrared (NIR) measurements to monitor the progress of reaction over the 120-minute process. We found that the creation of form-I was preferred when the addition speed or agitation speed was increased, but a highly pure form-II resulted if kinetic conditions were reversed. These differences in polymorphism can be explained by changes in kinetic characteristics when the process is monitored by NIR. This study is directly applicable to the industrial synthesis of these types of materials, precisely when specific CBZ-SAC cocrystalline polymorphs must be manufactured on a large scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. FDA, Guidance for industry; Regulatory classification of pharmaceutical co-crystals, http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm (2013).

    Google Scholar 

  2. N. J. Babu and A. Nanjia, Cryst. Growth Des., 11, 2662 (2011).

    Article  CAS  Google Scholar 

  3. N. Qiao, M. Li, W. Schlindwein, N. Malek, A. Davies and G. Trappitt, Int. J. Pharm., 419, 1 (2011).

    Article  CAS  Google Scholar 

  4. H. G. Brittain, J. Pharm. Sci., 102, 311 (2013).

    Article  CAS  Google Scholar 

  5. J.W. Steed, Trend Pharmacol. Sci., 34, 185 (2013).

    Article  CAS  Google Scholar 

  6. R. Thakuria, A. Delori, W. Jones, M. P. Lipert, L. Roy and N. Rodríguez-Hornedo, Int. J. Pharm., 453, 101 (2013).

    Article  CAS  Google Scholar 

  7. L. Padrela, M. A. Rodrigues, S. P. Velaga, H. A. Matos and E. G. deAzevedo, Eur. J. Pharm. Sci., 38, 9 (2009).

    Article  CAS  Google Scholar 

  8. J. H. ter Horst and P.W. Cains, Cryst. Growth Des., 8, 2537 (2008).

    Article  Google Scholar 

  9. R. S. Dhumal, S. V. Biradar, A. R. Paradkar and P. York, Int. J. Pharm., 368, 129 (2009).

    Article  CAS  Google Scholar 

  10. A. Alhalaweh and S. P. Velaga, Cryst. Growth Des., 10, 3302 (2010).

    Article  CAS  Google Scholar 

  11. J. H. ter Horst, M. A. Deij and P.W. Cains, Cryst. Growth Des., 9, 1531 (2009).

    Article  Google Scholar 

  12. K. Yamamoto, S. Tsutsumi and Y. Ikeda, Int. J. Pharm., 437, 162 (2012).

    Article  CAS  Google Scholar 

  13. P. P. Bag, M. Patni and C.M. Reddy, CrystEngComm, 13, 5650 (2011).

    Article  CAS  Google Scholar 

  14. W.W. Porter III, S. C. Elie and A. J. Matzger, Cryst. Growth Des., 8, 14 (2008).

    Article  CAS  Google Scholar 

  15. T. K. Wu, S.Y. Lin, H. L. Lin and Y.T. Huang, Bioorg. Med. Chem. Lett., 21, 3148 (2011).

    Article  CAS  Google Scholar 

  16. D. J. Good and N. Rodriguez-Hornedo, Cryst. Growth Des., 9, 2252 (2009).

    Article  CAS  Google Scholar 

  17. A. B.M. Buanz, G.N. Parkinson and S. Gaisford, Cryst. Growth Des., 11, 1177 (2011).

    Article  CAS  Google Scholar 

  18. W. Limwikrant A. Nagai, Y. Hagiwara, K. Higashi, K. Yamamoto and K. Moribe, Int. J. Pharm., 431, 237 (2012).

    Article  CAS  Google Scholar 

  19. T. Rager and R. Hilfiker, Cryst. Growth Des., 10, 3237 (2010).

    Article  CAS  Google Scholar 

  20. G.D. Profio, V. Grosso, A. Caridi, R. Caliandro, A. Guagliardi, G. Chita, E. Curcio and E. Drioli, CrystEngComm, 13, 5670 (2011).

    Article  Google Scholar 

  21. A. Caridi, G. Di Profio, R. Caliandro, A. Guagliardi, E. Curcio and E. Drioli, Cryst. Growth Des., 12, 4349 (2012).

    Article  CAS  Google Scholar 

  22. A.Y. Sheikh, S. A. Rahim, R.B. Hammond and K. J. Roberts, CrystEngComm, 11, 501 (2009).

    Article  CAS  Google Scholar 

  23. I.-C. Wang, M.-J. Lee, S.-J. Sim, W.-S. Kim, N.-H. Chun and G. J. Choi, Int. J. Pharm., 450, 311 (2013).

    Article  CAS  Google Scholar 

  24. M.-J. Lee, N.-H. Chun, I.-C. Wang, J. J. Liu, M.-Y. Jeong and G. J. Choi, Cryst. Growth Des., 13, 2067 (2013).

    Article  CAS  Google Scholar 

  25. N.-H. Chun, I.-C. Wang, M.-J. Lee, Y.-T. Jung, S.-k. Lee, W.-S. Kim and G. J. Choi, Eur. J. Pharm. Biopharm., 85, 854 (2013).

    Article  CAS  Google Scholar 

  26. S. K. Pagire, S. A. Korde, B.R. Whiteside, J. Kendrick and A. Paradkar, Cryst. Growth Des., 13, 4162 (2013).

    Article  CAS  Google Scholar 

  27. E. Lu, N. Rodríguez-Hornedo and R. Suryanarayanan, CrystEng-Comm, 10, 665 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang Jin Choi.

Additional information

These two authors equally made significant contribution to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, MJ., Wang, IC., Kim, MJ. et al. Controlling the polymorphism of carbamazepine-saccharin cocrystals formed during antisolvent cocrystallization using kinetic parameters. Korean J. Chem. Eng. 32, 1910–1917 (2015). https://doi.org/10.1007/s11814-014-0384-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0384-9

Keywords

Navigation