General Thoracic and Cardiovascular Surgery

, Volume 60, Issue 11, pp 744–755 | Cite as

Cardiovascular surgery for realization of regenerative medicine

Current Topics Review Article

Abstract

Regenerative medicine is emerging as a new approach to the treatment of severe cardiovascular diseases that are resistant to conventional therapies. Although the type of cell transplanted (e.g., pluripotent stem cells, bone marrow-derived stem cells, skeletal myoblasts, or cardiac stem cells) influences the outcome of stem cell transplantation, the method of transplantation is also important, as the efficiency of engraftment after simple needle injection is poor. Scaffold-free cell sheet transplantation technology is one of the most promising methods in this regard. Although the results of clinical trials of stem cell therapy have been marginal to date, further elucidation of the actual mechanisms of cardiac repair following cell therapy would enhance the potential for full-scale implementation of stem cell therapy. In addition to stem cell therapy, the field of cardiovascular regenerative medicine includes interspecific chimera technology, drug delivery systems using biodegradable materials, and gene therapy. Integration of these new modalities with conventional therapies will be important to realize the goal of cardiovascular regenerative medicine tailored to the condition of each individual patient. Cardiovascular surgery would be an excellent means of carrying out this strategy and could potentially resolve the health problems of the increasing number of advanced cardiovascular patients. Herein, we review the recent basic and clinical research associated with the realization of regenerative medicine in the field of cardiovascular surgery.

Keywords

Cardiovascular surgery Regenerative medicine Stem cell therapy 

References

  1. 1.
    Sakata R, Fujii Y, Kuwano H. Thoracic and cardiovascular surgery in Japan during 2009: annual report by the Japanese Association for Thoracic Surgery. Gen Thorac Cardiovasc Surg. 2011;59:636–67.PubMedCrossRefGoogle Scholar
  2. 2.
    Joggerst SJ, Hatzopoulos AK. Stem cell therapy for cardiac repair: benefits and barriers. Expert Rev Mol Med. 2009;11:e20.PubMedCrossRefGoogle Scholar
  3. 3.
    Ohno N, Fedak PW, Weisel RD, Komeda M, Mickle DA, Li RK. Cell transplantation in non-ischemic dilated cardiomyopathy: a novel biological approach for ventricular restoration. Jpn J Thorac Cardiovasc Surg. 2002;50:457–60.PubMedCrossRefGoogle Scholar
  4. 4.
    Sakakibara Y, Tambara K, Lu F, Nishina T, Nagaya N, Nishimura K, et al. Combined procedure of surgical repair and cell transplantation for left ventricular aneurysm: an experimental study. Circulation. 2002;106:I193–7.PubMedGoogle Scholar
  5. 5.
    Chien KR. Regenerative medicine and human models of human disease. Nature. 2008;453:302–5.PubMedCrossRefGoogle Scholar
  6. 6.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Murry CE, Keller G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell. 2008;132:661–80.PubMedCrossRefGoogle Scholar
  8. 8.
    Yamashita J, Itoh H, Hirashima M, Ogawa M, Nishikawa S, Yurugi T, et al. Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature. 2000;408:92–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Yamashita JK, Takano M, Hiraoka-Kanie M, Shimazu C, Yan P, Yanagi K, et al. Prospective identification of cardiac progenitors by a novel single cell-based cardiomyocyte induction. FASEB J. 2005;19:1534–6.PubMedGoogle Scholar
  10. 10.
    Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK, et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol. 2007;25:1015–24.PubMedCrossRefGoogle Scholar
  11. 11.
    Sone M, Itoh H, Yamahara K, Yamashita JK, Yurugi-Kobayashi T, Nonoguchi A, et al. Pathway for differentiation of human embryonic stem cells to vascular cell components and their potential for vascular regeneration. Arterioscler Thromb Vasc Biol. 2007;27:2127–34.PubMedCrossRefGoogle Scholar
  12. 12.
    Masumoto H, Matsuo T, Yamamizu K, Uosaki H, Narazaki G, Katayama S, et al. Pluripotent stem cell-engineered cell sheets re-assembled with defined cardiovascular populations ameliorate reduction in infarct heart function through cardiomyocyte-mediated neovascularization. Stem Cells. 2012;30:1196–205.PubMedCrossRefGoogle Scholar
  13. 13.
    van Laake LW, Passier R, Monshouwer-Kloots J, Verkleij AJ, Lips DJ, Freund C, et al. Human embryonic stem cell-derived cardiomyocytes survive and mature in the mouse heart and transiently improve function after myocardial infarction. Stem Cell Res. 2007;1:9–24.PubMedCrossRefGoogle Scholar
  14. 14.
    Blum B, Benvenisty N. The tumorigenicity of human embryonic stem cells. Adv Cancer Res. 2008;100:133–58.PubMedCrossRefGoogle Scholar
  15. 15.
    Draper JS, Pigott C, Thomson JA, Andrews PW. Surface antigens of human embryonic stem cells: changes upon differentiation in culture. J Anat. 2002;200:249–58.PubMedCrossRefGoogle Scholar
  16. 16.
    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.PubMedCrossRefGoogle Scholar
  17. 17.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.PubMedCrossRefGoogle Scholar
  18. 18.
    Narazaki G, Uosaki H, Teranishi M, Okita K, Kim B, Matsuoka S, et al. Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation. 2008;118:498–506.PubMedCrossRefGoogle Scholar
  19. 19.
    Uosaki H, Fukushima H, Takeuchi A, Matsuoka S, Nakatsuji N, Yamanaka S, et al. Efficient and scalable purification of cardiomyocytes from human embryonic and induced pluripotent stem cells by VCAM1 surface expression. PLoS One. 2011;6:e23657.PubMedCrossRefGoogle Scholar
  20. 20.
    Okita K, Matsumura Y, Sato Y, Okada A, Morizane A, Okamoto S, et al. A more efficient method to generate integration-free human iPS cells. Nat Methods. 2011;8:409–12.PubMedCrossRefGoogle Scholar
  21. 21.
    Hiratsuka M, Uno N, Ueda K, Kurosaki H, Imaoka N, Kazuki K, et al. Integration-free iPS cells engineered using human artificial chromosome vectors. PLoS One. 2011;6:e25961.PubMedCrossRefGoogle Scholar
  22. 22.
    Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, et al. Bone marrow cells regenerate infarcted myocardium. Nature. 2001;410:701–5.PubMedCrossRefGoogle Scholar
  23. 23.
    Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I, Quaini F, et al. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci USA. 2001;98:10344–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Nakajima HO, Rubart M, et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature. 2004;428:664–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Leistner DM, Fischer-Rasokat U, Honold J, Seeger FH, Schächinger V, Lehmann R, et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI): final 5-year results suggest long-term safety and efficacy. Clin Res Cardiol. 2011;100:925–34.PubMedCrossRefGoogle Scholar
  26. 26.
    Meyer GP, Wollert KC, Lotz J, Steffens J, Lippolt P, Fichtner S, et al. Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months’ follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circulation. 2006;113:1287–94.PubMedCrossRefGoogle Scholar
  27. 27.
    Assmus B, Rolf A, Erbs S, Elsässer A, Haberbosch W, Hambrecht R, et al. Clinical outcome 2 years after intracoronary administration of bone marrow-derived progenitor cells in acute myocardial infarction. Circ Heart Fail. 2010;3:89–96.PubMedCrossRefGoogle Scholar
  28. 28.
    Traverse JH, Henry TD, Ellis SG, Pepine CJ, Willerson JT, Zhao DX, et al. Effect of intracoronary delivery of autologous bone marrow mononuclear cells 2 to 3 weeks following acute myocardial infarction on left ventricular function: the LateTIME randomized trial. JAMA. 2011;306:2110–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002;418:41–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Tomita S, Li RK, Weisel RD, Mickle DA, Kim EJ, Sakai T, et al. Autologous transplantation of bone marrow cells improves damaged heart function. Circulation. 1999;100:II247–56.Google Scholar
  31. 31.
    Dai W, Hale SL, Martin BJ, Kuang JQ, Dow JS, Wold LE, et al. Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium: short- and long-term effects. Circulation. 2005;112:214–23.PubMedCrossRefGoogle Scholar
  32. 32.
    Le Blanc K, Ringdén O. Immunomodulation by mesenchymal stem cells and clinical experience. J Intern Med. 2007;262:509–25.PubMedCrossRefGoogle Scholar
  33. 33.
    Miyahara Y, Nagaya N, Kataoka M, Yanagawa B, Tanaka K, Hao H, et al. Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med. 2006;12:459–65.PubMedCrossRefGoogle Scholar
  34. 34.
    Chen SL, Fang WW, Ye F, Liu YH, Qian J, Shan SJ, et al. Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol. 2004;94:92–5.PubMedCrossRefGoogle Scholar
  35. 35.
    Yoon YS, Park JS, Tkebuchava T, Luedeman C, Losordo DW. Unexpected severe calcification after transplantation of bone marrow cells in acute myocardial infarction. Circulation. 2004;109:3154–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275:964–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Hristov M, Weber C. Endothelial progenitor cells in vascular repair and remodeling. Pharmacol Res. 2008;58:148–51.PubMedCrossRefGoogle Scholar
  38. 38.
    Gill M, Dias S, Hattori K, Rivera ML, Hicklin D, Witte L, et al. Vascular trauma induces rapid but transient mobilization of VEGFR2(+)AC133(+) endothelial precursor cells. Circ Res. 2001;88:167–74.PubMedCrossRefGoogle Scholar
  39. 39.
    Shintani S, Murohara T, Ikeda H, Ueno T, Honma T, Katoh A, et al. Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation. 2001;103:2776–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Patenaude A, Parker J, Karsan A. Involvement of endothelial progenitor cells in tumor vascularization. Microvasc Res. 2010;79:217–23.PubMedCrossRefGoogle Scholar
  41. 41.
    Kalka C, Tehrani H, Laudenberg B, Vale PR, Isner JM, Asahara T, et al. VEGF gene transfer mobilizes endothelial progenitor cells in patients with inoperable coronary disease. Ann Thorac Surg. 2000;70:829–34.PubMedCrossRefGoogle Scholar
  42. 42.
    Fukuhara S, Tomita S, Nakatani T, Ohtsu Y, Ishida M, Yutani C, et al. G-CSF promotes bone marrow cells to migrate into infarcted mice heart, and differentiate into cardiomyocytes. Cell Transplant. 2004;13:741–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Llevadot J, Murasawa S, Kureishi Y, Uchida S, Masuda H, Kawamoto A, et al. HMG-CoA reductase inhibitor mobilizes bone marrow-derived endothelial progenitor cells. J Clin Invest. 2001;108:399–405.PubMedGoogle Scholar
  44. 44.
    Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med. 2001;7:430–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Tendera M, Wojakowski W, Ruzyłło W, Chojnowska L, Kepka C, Tracz W, et al. Intracoronary infusion of bone marrow-derived selected CD34+CXCR4+ cells and non-selected mononuclear cells in patients with acute STEMI and reduced left ventricular ejection fraction: results of randomized, multicentre Myocardial Regeneration by Intracoronary Infusion of Selected Population of Stem Cells in Acute Myocardial Infarction (REGENT) Trial. Eur Heart J. 2009;30:1313–21.PubMedCrossRefGoogle Scholar
  46. 46.
    den Dekker WK, Houtgraaf JH, Onuma Y, Benit E, de Winter RJ, Wijns W, et al. Final results of the HEALING IIB trial to evaluate a bio-engineered CD34 antibody coated stent (Genous™Stent) designed to promote vascular healing by capture of circulating endothelial progenitor cells in CAD patients. Atherosclerosis. 2011;219:245–52.CrossRefGoogle Scholar
  47. 47.
    Miglionico M, Patti G, D’Ambrosio A, Di Sciascio G. Percutaneous coronary intervention utilizing a new endothelial progenitor cells antibody-coated stent: a prospective single-center registry in high-risk patients. Catheter Cardiovasc Interv. 2008;71:600–4.PubMedCrossRefGoogle Scholar
  48. 48.
    Jujo K, Ii M, Losordo DW. Endothelial progenitor cells in neovascularization of infarcted myocardium. J Mol Cell Cardiol. 2008;45:530–44.PubMedCrossRefGoogle Scholar
  49. 49.
    Vasa M, Fichtlscherer S, Aicher A, Adler K, Urbich C, Martin H, et al. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res. 2001;89:E1–7.PubMedCrossRefGoogle Scholar
  50. 50.
    Buckingham M, Montarras D. Skeletal muscle stem cells. Curr Opin Genet Dev. 2008;18:330–6.PubMedCrossRefGoogle Scholar
  51. 51.
    Murry CE, Wiseman RW, Schwartz SM, Hauschka SD. Skeletal myoblast transplantation for repair of myocardial necrosis. J Clin Invest. 1996;98:2512–23.PubMedCrossRefGoogle Scholar
  52. 52.
    Pagani FD, DerSimonian H, Zawadzka A, Wetzel K, Edge AS, Jacoby DB, et al. Autologous skeletal myoblasts transplanted to ischemia-damaged myocardium in humans. Histological analysis of cell survival and differentiation. J Am Coll Cardiol. 2003;41:879–88.PubMedCrossRefGoogle Scholar
  53. 53.
    Arsic N, Mamaeva D, Lamb NJ, Fernandez A. Muscle-derived stem cells isolated as non-adherent population give rise to cardiac, skeletal muscle and neural lineages. Exp Cell Res. 2008;314:1266–80.PubMedCrossRefGoogle Scholar
  54. 54.
    Taylor DA, Atkins BZ, Hungspreugs P, Jones TR, Reedy MC, Hutcheson KA, et al. Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat Med. 1998;4:929–33.PubMedCrossRefGoogle Scholar
  55. 55.
    Farahmand P, Lai TY, Weisel RD, Fazel S, Yau T, Menasché P, et al. Skeletal myoblasts preserve remote matrix architecture and global function when implanted early or late after coronary ligation into infarcted or remote myocardium. Circulation. 2008;118:S130–7.PubMedCrossRefGoogle Scholar
  56. 56.
    Siminiak T, Fiszer D, Jerzykowska O, Grygielska B, Rozwadowska N, Kałmucki P, et al. Percutaneous trans-coronary-venous transplantation of autologous skeletal myoblasts in the treatment of post-infarction myocardial contractility impairment: the POZNAN trial. Eur Heart J. 2005;26:1188–95.PubMedCrossRefGoogle Scholar
  57. 57.
    Dib N, Dinsmore J, Lababidi Z, White B, Moravec S, Campbell A, et al. One-year follow-up of feasibility and safety of the first US, randomized, controlled study using 3-dimensional guided catheter-based delivery of autologous skeletal myoblasts for ischemic cardiomyopathy (CAuSMIC study). JACC Cardiovasc Interv. 2009;2:9–16.Google Scholar
  58. 58.
    Menasché P, Alfieri O, Janssens S, McKenna W, Reichenspurner H, Trinquart L, et al. The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation. 2008;117:1189–200.PubMedCrossRefGoogle Scholar
  59. 59.
    Roell W, Lewalter T, Sasse P, Tallini YN, Choi BR, Breitbach M, et al. Engraftment of connexin 43-expressing cells prevents post-infarct arrhythmia. Nature. 2007;450:819–24.PubMedCrossRefGoogle Scholar
  60. 60.
    Suzuki K, Murtuza B, Beauchamp JR, Smolenski RT, Varela-Carver A, Fukushima S, et al. Dynamics and mediators of acute graft attrition after myoblast transplantation to the heart. FASEB J. 2004;18:1153–5.PubMedGoogle Scholar
  61. 61.
    Development of New Strategy for Severe Heart Failure Using Autologous Myoblast Sheets. UMIN Clinical Trials Registry (UMIN-CTR). http://www.umin.ac.jp/ctr/index-j.htm UMIN000003273 (Accessed 8 April 2012).
  62. 62.
    Anversa P, Palackal T, Sonnenblick EH, Olivetti G, Capasso JM. Hypertensive cardiomyopathy. Myocyte nuclei hyperplasia in the mammalian rat heart. J Clin Invest. 1990;85:994–7.PubMedCrossRefGoogle Scholar
  63. 63.
    Beltrami AP, Urbanek K, Kajstura J, Yan SM, Finato N, Bussani R, et al. Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med. 2001;344:1750–7.PubMedCrossRefGoogle Scholar
  64. 64.
    Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabé-Heider F, Walsh S, et al. Evidence for cardiomyocyte renewal in humans. Science. 2009;324:98–102.PubMedCrossRefGoogle Scholar
  65. 65.
    Ellison GM, Torella D, Karakikes I, Nadal-Ginard B. Myocyte death and renewal: modern concepts of cardiac cellular homeostasis. Nat Clin Pract Cardiovasc Med. 2007;4:S52–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Challen GA, Little MH. A side order of stem cells: the SP phenotype. Stem Cells. 2006;24:3–12.PubMedCrossRefGoogle Scholar
  67. 67.
    Oyama T, Nagai T, Wada H, Naito AT, Matsuura K, Iwanaga K, et al. Cardiac side population cells have a potential to migrate and differentiate into cardiomyocytes in vitro and in vivo. J Cell Biol. 2007;176:329–41.PubMedCrossRefGoogle Scholar
  68. 68.
    Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003;114:763–76.PubMedCrossRefGoogle Scholar
  69. 69.
    Oh H, Bradfute SB, Gallardo TD, Nakamura T, Gaussin V, Mishina Y, et al. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci USA. 2003;100:12313–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Messina E, De Angelis L, Frati G, Morrone S, Chimenti S, Fiordaliso F, et al. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res. 2004;95:911–21.PubMedCrossRefGoogle Scholar
  71. 71.
    Takehara N, Tsutsumi Y, Tateishi K, Ogata T, Tanaka H, Ueyama T, et al. Controlled delivery of basic fibroblast growth factor promotes human cardiosphere-derived cell engraftment to enhance cardiac repair for chronic myocardial infarction. J Am Coll Cardiol. 2008;52:1858–65.PubMedCrossRefGoogle Scholar
  72. 72.
    Moore KA, Lemischka IR. Stem cells and their niches. Science. 2006;311:1880–5.PubMedCrossRefGoogle Scholar
  73. 73.
    Smart N, Bollini S, Dubé KN, Vieira JM, Zhou B, Davidson S, et al. De novo cardiomyocytes from within the activated adult heart after injury. Nature. 2011;474:640–4.PubMedCrossRefGoogle Scholar
  74. 74.
    Torella D, Ellison GM, Méndez-Ferrer S, Ibanez B, Nadal-Ginard B. Resident human cardiac stem cells: role in cardiac cellular homeostasis and potential for myocardial regeneration. Nat Clin Pract Cardiovasc Med. 2006;3:S8–13.PubMedCrossRefGoogle Scholar
  75. 75.
    Siu CW, Tse HF. Cardiac regeneration: messages from CADUCEUS. Lancet. 2012;379:870–1.PubMedCrossRefGoogle Scholar
  76. 76.
    Makkar RR, Smith RR, Cheng K, Malliaras K, Thomson LE, Berman D, et al. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet. 2012;379:895–904.PubMedCrossRefGoogle Scholar
  77. 77.
    Bolli R, Chugh AR, D’Amario D, Loughran JH, Stoddard MF, Ikram S, et al. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet. 2011;378:1847–57.PubMedCrossRefGoogle Scholar
  78. 78.
    AutoLogous human CArdiac-Derived stem cell to treat Ischemic cArdiomyopathy (ALCADIA) trial. http://www.clinicaltrials.gov/ct2/show/ NCT00981006 (Accessed 8 April 2012).
  79. 79.
    Pelacho B, Mazo M, Gavira JJ, Prósper F. Adult stem cells: from new cell sources to changes in methodology. J Cardiovasc Transl Res. 2011;4:154–60.PubMedCrossRefGoogle Scholar
  80. 80.
    Müller-Ehmsen J, Whittaker P, Kloner RA, Dow JS, Sakoda T, Long TI, et al. Survival and development of neonatal rat cardiomyocytes transplanted into adult myocardium. J Mol Cell Cardiol. 2002;34:107–16.PubMedCrossRefGoogle Scholar
  81. 81.
    Teng CJ, Luo J, Chiu RC, Shum-Tim D. Massive mechanical loss of microspheres with direct intramyocardial injection in the beating heart: implications for cellular cardiomyoplasty. J Thorac Cardiovasc Surg. 2006;132:628–32.PubMedCrossRefGoogle Scholar
  82. 82.
    Cortes-Morichetti M, Frati G, Schussler O, Duong Van Huyen JP, Lauret E, Genovese JA. Association between a cell-seeded collagen matrix and cellular cardiomyoplasty for myocardial support and regeneration. Tissue Eng. 2007;13:2681–7.PubMedCrossRefGoogle Scholar
  83. 83.
    Christman KL, Lee RJ. Biomaterials for the treatment of myocardial infarction. J Am Coll Cardiol. 2006;48:907–13.PubMedCrossRefGoogle Scholar
  84. 84.
    Simpson D, Liu H, Fan TH, Nerem R, Dudley SC Jr. A tissue engineering approach to progenitor cell delivery results in significant cell engraftment and improved myocardial remodeling. Stem Cells. 2007;25:2350–7.PubMedCrossRefGoogle Scholar
  85. 85.
    Zimmermann WH, Melnychenko I, Wasmeier G, Didié M, Naito H, Nixdorff U, et al. Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat Med. 2006;12:452–8.PubMedCrossRefGoogle Scholar
  86. 86.
    Okano T, Yamada N, Sakai H, Sakurai Y. A novel recovery system for cultured cells using plasma-treated polystyrene dishes grafted with poly (N-isopropylacrylamide). J Biomed Mater Res. 1993;27:1243–51.PubMedCrossRefGoogle Scholar
  87. 87.
    Bartosh TJ, Wang Z, Rosales AA, Dimitrijevich SD, Roque RS. 3D-model of adult cardiac stem cells promotes cardiac differentiation and resistance to oxidative stress. J Cell Biochem. 2008;105:612–23.PubMedCrossRefGoogle Scholar
  88. 88.
    Wei HJ, Chen CH, Lee WY, Chiu I, Hwang SM, Lin WW, et al. Bioengineered cardiac patch constructed from multilayered mesenchymal stem cells for myocardial repair. Biomaterials. 2008;29:3547–56.PubMedCrossRefGoogle Scholar
  89. 89.
    Shudo Y, Miyagawa S, Fukushima S, Saito A, Shimizu T, Okano T, et al. Novel regenerative therapy using cell-sheet covered with omentum flap delivers a huge number of cells in a porcine myocardial infarction model. J Thorac Cardiovasc Surg. 2011;142:1188–96.PubMedCrossRefGoogle Scholar
  90. 90.
    Mazo M, Pelacho B, Prósper F. Stem cell therapy for chronic myocardial infarction. J Cardiovasc Transl Res. 2010;3:79–88.PubMedCrossRefGoogle Scholar
  91. 91.
    Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM, Netoff TI, et al. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med. 2008;14:213–21.PubMedCrossRefGoogle Scholar
  92. 92.
    Kobayashi T, Yamaguchi T, Hamanaka S, Kato-Itoh M, Yamazaki Y, Ibata M, et al. Generation of rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells. Cell. 2010;142:787–99.PubMedCrossRefGoogle Scholar
  93. 93.
    Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency (JST). http://www.jst.go.jp/erato/project/nks_P/nks_P.html.
  94. 94.
    Tabata Y. Tissue regeneration based on growth factor release. Tissue Eng. 2003;9:S5–15.PubMedCrossRefGoogle Scholar
  95. 95.
    Marui A, Tabata Y, Kojima S, Yamamoto M, Tambara K, Nishina T, et al. A novel approach to therapeutic angiogenesis for patients with critical limb ischemia by sustained release of basic fibroblast growth factor using biodegradable gelatin hydrogel: an initial report of the phase I–IIa study. Circ J. 2007;71:1181–6.PubMedCrossRefGoogle Scholar
  96. 96.
    Gaffney MM, Hynes SO, Barry F, O’Brien T. Cardiovascular gene therapy: current status and therapeutic potential. Br J Pharmacol. 2007;152:175–88.PubMedCrossRefGoogle Scholar
  97. 97.
    Jessup M, Greenberg B, Mancini D, Cappola T, Pauly DF, Jaski B, et al. Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID): a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+-ATPase in patients with advanced heart failure. Circulation. 2011;124:304–13.PubMedCrossRefGoogle Scholar
  98. 98.
    Frost RJ, van Rooij E. miRNAs as therapeutic targets in ischemic heart disease. J Cardiovasc Transl Res. 2010;3:280–9.PubMedCrossRefGoogle Scholar
  99. 99.
    Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell. 2010;142:375–86.PubMedCrossRefGoogle Scholar
  100. 100.
    Qian L, Huang Y, Spencer CI, Foley A, Vedantham V, Liu L, et al. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature. 2012;485:593–8.PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Association for Thoracic Surgery 2012

Authors and Affiliations

  1. 1.Department of Cardiovascular SurgeryKyoto University Graduate School of MedicineKyotoJapan
  2. 2.Department of Cell Growth and DifferentiationCenter for iPS Cell Research and Application (CiRA), Kyoto UniversityKyotoJapan

Personalised recommendations