Skip to main content
Log in

Aluminum-induced citric acid secretion is not the sole mechanism of Al-resistance in maize

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Aluminum-induced citric acid (CA) root secretion is a widely accepted mechanism to explain Al-resistance in maize. Nonetheless, several aspects of this mechanism remain controversial. In this study, we used paclobutrazol (PBZ), a plant growth retardant, to gain new insights into the relationship between Δ5-sterol composition, membrane permeability, (PM) H+-ATPase activity and CA secretion in an Al-sensitive (UFVM-100) and Al-resistant (UFVM-200) maize genotypes challenged with Al. The Al-sensitive genotype displayed greater concentrations of Al in the root tips and greater inhibition of root elongation (RE), which was accompanied by greater electrolyte leakage and greater reduction in the Δ5-sterols content after Al treatment. CA secretion by roots increased in both genotypes after Al treatment but to a greater extent in the Al-resistant genotype. The (PM) H+-ATPase activity was down-regulated in the sensitive cultivar and up-regulated in its resistant counterpart upon Al treatment. A significant correlation between (PM) H+-ATPase activity and CA secretion was observed, but only in the Al-resistant genotype. Upon adding PBZ to the Al-treated plants, differences in the RE and Δ5-sterol composition between the maize genotypes were fully abolished, whereas genotypic differences in CA secretion and (PM) H+-ATPase activity were reduced but not completely eliminated. Taken together, this information suggests the existence of other processes or mechanisms operating in the Al resistance in these two maize genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahn SJ, Rengel Z, Matsumoto H (2004) Aluminum-induced plasma membrane surface potential and H+-ATPase activity in near isogenic wheat lines differing in tolerance to aluminum. New Phytol 162:71–79

    Article  CAS  Google Scholar 

  • Benveniste P (2004) Biosynthesis and accumulation of sterols. Annu Rev Plant Biol 55:429–457

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cambraia J, Galvani FR, Estevão MM, Sant’Anna R (1983) Effects of aluminum on organic acid, sugar and amino acid composition of the root system of sorghum (Sorghum bicolor L. Moench). J Plant Nutr 6:313–322

    Article  CAS  Google Scholar 

  • Cassol D, Cambraia J, Ribeiro C, Oliveira JA, Cardoso FB (2016) Citric acid secretion induced by aluminum in two Stylosanthes species. Biol Plant 60:572–578

    Article  CAS  Google Scholar 

  • Chaffai R, Marzouk B (2009) The role of organic acids in the short- and long-term aluminum tolerance in maize seedlings (Zea mays L.). Acta Physiol Plant 31:805–814

    Article  CAS  Google Scholar 

  • Chaffai R, Marzouk B, El Ferjani E (2005) Aluminum mediates compositional alterations of polar lipid classes in maize seedlings. Planta 196:788–795

    Google Scholar 

  • Chen Q, Guo C-L, Wang P, Chen X-Q, Wu K-H, Li K-Z, Yu Y-X, Chen L-M (2013) Up-regulation and interaction of the plasma membrane H+-ATPase and the 14-3-3 protein are involved in the regulation of citrate exudation from the broad bean (Vicia faba L.) under Al stress. Plant Physiol Biochem 70:504–511

    Article  CAS  PubMed  Google Scholar 

  • Ding H, Wen D, Fu Z, Qian H (2014) The secretion of organic acids is also regulated by factors other than aluminum. Environ Monit Assess 186:1123–1131

    Article  CAS  PubMed  Google Scholar 

  • Doncheva S, Amenos M, Poschenrieder C, Barceló J (2005) Root cell patterning: a primary target for aluminium toxicity in maize. J Exp Bot 56:1213–1220

    Article  CAS  PubMed  Google Scholar 

  • Dupont S, Beney L, Ferreira T, Gervais P (2011) Nature of sterols affects plasma membrane behavior and yeast survival during dehydration. Biochim Biophys Acta 1803:1520–1528

    Article  Google Scholar 

  • Fletcher RA, Gilley A, Sankla N, Davis TD (2000) Triazoles as plant growth regulators and stress protectants. Hortic Rev 24:55–138

    CAS  Google Scholar 

  • Grandmougin-Ferjani A, Schuler-Muller I, Hartmann MA (1997) Sterol modulation of the plasma membrane H+-ATPase activity from corn roots reconstituted into soybean lipids. Plant Physiol 113:163–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo CL, Chen Q, Zhao XL, Chen XQ, Zhao Y, Wang L, Li KZ, Yu YX, Chen LM (2013) Al-enhanced expression and interaction of 14-3-3 protein and plasma membrane H+-ATPase is related to Al-induced citrate secretion in an Al-resistant black soybean. Plant Mol Biol Rep 31:1012–1024

    Article  CAS  Google Scholar 

  • Horst WJ, Wang Y, Eticha D (2010) The role of the root apoplast in aluminium induced inhibition of root elongation and in aluminium resistance of plants: a review. Ann Bot 106:185–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huynh V-B, Repellin A, Zuily-Fodil Y, Anh-Thu P-T (2012) Aluminum stress response in rice: effects on membrane lipid composition and expression of lipid biosynthesis genes. Physiol Plant 146:272–284

    Article  CAS  PubMed  Google Scholar 

  • Khan MSH, Tawaraya T, Sekimoto H, Koyama H, Kobayashi Y, Murayama T, Chuba M, Kambayashi M, Shiono Y, Uemura M, Ishikawa S, Wagatsuma T (2009a) Relative abundance of Δ5-sterols in plasma membrane lipids of root-tip cells correlates with aluminum tolerance of rice. Physiol Plant 135:73–83

    Article  CAS  PubMed  Google Scholar 

  • Khan MSH, Wagatsuma T, Akhter A, Tawaraya K (2009b) Sterol biosynthesis inhibition by paclobutrazol induces greater aluminum (Al) sensitivity in Al-tolerant rice. Am J Plant Physiol 4:89–99

    Article  CAS  Google Scholar 

  • Kim YS, Park W, Nian H, Sasaki T, Ezaki B, Jang Y, Chung G, Bae H, Ahn SJ (2010) Aluminum tolerance associated with enhancement of plasma membrane H+-ATPase in the root apex of soybean. Soil Sci Plant Nutr 56:140–149

    Article  CAS  Google Scholar 

  • Kochian LV, Hoekenga OA, Piñeros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55:459–493

    Article  CAS  PubMed  Google Scholar 

  • Kollmeier M, Felle HH, Horst WJ (2000) Genotypic differences in aluminum resistance of maize are expressed in the distal part of the transition zone. Is reduced basipetal auxin flow involved in inhibition of root elongation by aluminum? Plant Physiol 122:945–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsson C, Widell S, Kjelbom P (1987) Preparation of high-purity plasma membranes. Method Enzym 148:558–568

    Article  CAS  Google Scholar 

  • Lima ALS, DaMatta FM, Pinheiro HA, Totola MR, Loureiro ME (2002) Photochemical responses and oxidative stress in two clones of Coffea canephora under water deficit conditions. Environ Exp Bot 47:239–247

    Article  CAS  Google Scholar 

  • Ma JF, Chang Z, Shen RF (2014) Molecular mechanisms of Al tolerance in gramineous plants. Plant Soil 381:1–12

    Article  CAS  Google Scholar 

  • Matonyei TK, Cheprot RK, Liu J, Piñeros MA, Shaff JE, Gudu S, Were B, Magalhães JV, Kochian LV (2014) Physiological and molecular analysis of aluminum tolerance in selected Kenyan maize lines. Plant Soil 377:357–367

    Article  CAS  Google Scholar 

  • Morales-Cedillo F, Gonzáles-Solís A, Gutiérrez-Angoa L, Cano-Ramirez DL, Gavilanes-Ruiz M (2015) Plant lipid environment and membrane enzymes: the case of the plasma membrane H+-ATPase. Plant Cell Rep 34:617–629

    Article  CAS  PubMed  Google Scholar 

  • Peixoto PHP, Cambraia J, Sant’Anna R, Mosquim PR, Moreira MA (2001) Aluminum effects on fatty acid composition and lipid peroxidation of a purified plasma membrane fraction of root apices of two sorghum cultivars. J Plant Nutr 24:1061–1070

    Article  CAS  Google Scholar 

  • Pellet DM, Grunes DL, Kochian LV (1995) Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.). Planta 196:788–795

    Article  CAS  Google Scholar 

  • Piñeros MA, Magalhães JV, Alves VMC, Kochian V (2002) The physiology and biophysics of an aluminum tolerance mechanism based on root citrate exudation in maize. Plant Physiol 129:1194–1206

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen H, He LF, Sasaki T, Yamamoto Y, Zheng SJ, Ligaba A, Yan XL, Ahn SJ, Yamaguchi M, Sasakawa H, Matsumoto H (2005) Citrate secretion coupled with the modulation of soybean root tip under aluminum stress. Up-regulation of transcription, translation, and threonine-oriented phosphorylation of plasma membrane H+-ATPase. Plant Physiol 138:287–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silvestro D, Andersen TG, Schaller H, Jensen PE (2013) Plant sterol metabolism. ∆7-sterol-C5-desaturase (STE1/DWARF7), ∆5,7-sterol-∆7-reductase (DWARF5) and ∆24-sterol-∆24-reductase (DIMINUTO/DWARF1) show multiple subcellular localizations in Arabidopsis thaliana (Heynh) L. PLoS One 8:e56429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorgonà A, Lupini A, Mercati F, Dio L, Sunseri F, Abenavoli MR (2011) Nitrate uptake along the maize primary root: an integrated physiological and molecular approach. Plant Cell Environ 34:1127–1140

    Article  PubMed  Google Scholar 

  • Toivo J, Phillips K, Lampi AM, Piironen V (2001) Determination of sterols in foods: recovery of free, esterified, and glycosidic sterols. J Food Compos Anal 14:631–643

    Article  CAS  Google Scholar 

  • Verstraeten SV, Oteiza PI (2002) Al3+-mediated changes in membrane physical properties participate in the inhibition of polyphosphoinositide hydrolysis. Arch Biochem Biophys 408:263–271

    Article  CAS  PubMed  Google Scholar 

  • Wagatsuma T, Khan MSH, Watanabe T, Maejima E, Yokota T, Nakano T, Toyomasu T, Tawaraya K, Sekimoto H, Koyama H, Uemura M, Ishikawa S, Ikka T, Ishikawa A, Kawamura T, Murakami S, Ueki N, Umetsu A, Kannari T (2015) Higher sterol content regulated by CYP51 with concomitant lower phospholipid content in membranes is a common strategy for aluminium tolerance in several plant species. J Exp Bot 66:907–918

    Article  CAS  PubMed  Google Scholar 

  • Yang JL, Zheng C, Zhu XF, Ming F, Zheng SJ (2011a) Aluminum regulates oxalate secretion and plasma membrane H+-ATPase activity independently in tomato roots. Planta 234:281–291

    Article  CAS  PubMed  Google Scholar 

  • Yang XY, Yang JL, Zhou Y, Piñeros MA, Kochian LV, Li G, Zheng SJ (2011b) A de novo synthesis citrate transporter, Vigna umbellata multidrug and toxic compound extrusion, implicates in Al-activated citrate efflux in rice bean (Vigna umbellata) root apex. Plant, Cell Environ 34:2138–2148

    Article  CAS  Google Scholar 

  • Yang LT, Qi YP, Jiang HH, Chen LS (2013) Roles of organic acid anion secretion in aluminium tolerance of higher plants. BioMed Res Int Article ID 173682:1–16

    Google Scholar 

  • Zeng H, Feng X, Wang B, Zhu Y, Shen Q, Xu G (2013) Citrate exudation induced by aluminum is independent of plasma membrane H+-ATPase activity and coupled with potassium efflux from cluster roots of phosphorus-deficient white lupin. Plant Soil 366:389–400

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Research Support Foundation of Minas Gerais (Fundação de Amparo à Pesquisa do Estado de Minas Gerais—FAPEMIG) for the financial support of this study and the National Council for Scientific and Technological Development (Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq) for the fellowships awarded.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Cambraia.

Additional information

Communicated by S. Renault.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardoso, F.B., Cambraia, J., de Oliveira, J.A. et al. Aluminum-induced citric acid secretion is not the sole mechanism of Al-resistance in maize. Acta Physiol Plant 38, 279 (2016). https://doi.org/10.1007/s11738-016-2286-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-016-2286-4

Keyword

Navigation