Skip to main content
Log in

Phenols, proline and low-molecular thiol levels in pea (Pisum sativum) plants respond differently toward prolonged exposure to ultraviolet-B and ultraviolet-C radiations

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Pea (Pisum sativum L.) seedlings were exposed to low, moderate, and high regimes of ultraviolet-B (UV-B) (ld-B 4.4, md-B 13.3, and hd-B 26.5 kJ m−2 day−1), or ultraviolet-C (UV-C) (ld-C 0.1, md-C 0.3, and hd-C 0.6 kJ m−2 day−1) radiations. Concentrations of total phenols, free proline, and low-molecular thiol groups were determined in the last formed (young) and older leaves after irradiation for 7, 10 or 14 consecutive days. Shoot length and weight did not change markedly after 14 days of ld-B and ld-C, but reduced substantially after moderate and high regimes of both UV-B and UV-C. Proline decreased upon high doses of irradiation, while in ld-B treated plants, by contrast, an increase was observed. The reduction in total phenols and thiols was stronger after hd-B than after hd-C irradiations, although an induction was found in ld-B treated plants. In contrast to ld-B, ld-C regime led mainly to reductions or insignificant changes in proline, phenols, and thiols. Therefore, the stress-protection mechanisms are different between low UV-B and UV-C irradiation regimes in regard to proline, phenols, and thiols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ 24:1337–1344. doi:10.1046/j.1365-3040.2001.00778.x

    Article  CAS  Google Scholar 

  • Ballaré CO, Rousseaux MC, Searles PS, Zaller JG, Giordano CV, Robson TM et al (2001) Impacts of solar ultraviolet-B radiation on terrestrial ecosystems of Tierra del Fuego (southern Argentina). An overview of recent progress. J Photochem Photobiol B Biol 61:67–77. doi:10.1016/S1011-1344(01)00152-X

    Article  Google Scholar 

  • Bassman JH (2004) Ecosystem consequences of enhanced solar ultraviolet radiation: secondary plant metabolites as mediators of multiple trophic interactions in terrestrial plant communities. Photochem Photobiol 79:382–398. doi:10.1562/SI-03-24.1

    Article  PubMed  CAS  Google Scholar 

  • Bates LS, Waldren RP, Tearee ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207. doi:10.1007/BF00018060

    Article  CAS  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress. Ann Bot (Lond) 91:179–194. doi:10.1093/aob/mcf118

    Article  CAS  Google Scholar 

  • Bornman JF, Evert RF, Mierzwa RJ (1983) The effect of UV-B and UV-C radiation on sugar beet leaves. Protoplasma 117:7–16. doi:10.1007/BF01281779

    Article  Google Scholar 

  • Caldwell MM (1971) Solar ultraviolet radiation and the growth and development of higher plants. In: Giese AC (ed) Photophysiology, vol 6. Academic Press, New York, pp 131–171

    Google Scholar 

  • Caldwell MM, Bornman JF, Ballaré CL, Flint SD, Kulandaivelu G (2007) Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors. Photochem Photobiol Sci 6:252–266. doi:10.1039/b700019g

    Article  PubMed  CAS  Google Scholar 

  • Casati P, Andreo CS (2001) UV-B and UV-C induction of NADP-malic enzyme in tissues of different cultivars of Phaseolus vulgaris (bean). Plant Cell Physiol 24:621–630

    CAS  Google Scholar 

  • Córdoba C, Muňos JA, Cachorro V, de Cárcer IA, Cussó F, Jaque F (1997) The detection of solar ultraviolet-C radiation using KCl:Eu2+ thermoluminiscence dosimeters. J Phys D Appl Phys 30:3024–3027. doi:10.1088/0022-3727/30/21/017

    Article  Google Scholar 

  • Demir Y (2000) Growth and proline content of germinating wheat genotypes under ultraviolet light. Turk J Bot 24:67–70

    Google Scholar 

  • Duval B, Shetty K, Thomas WH (2000) Phenolic compounds and antioxidant properties in the snow alga Chlamydomonas nivalis after exposure to UV light. J Appl Phycol 11:559–566. doi:10.1023/A:1008178208949

    Article  Google Scholar 

  • Edreva A (2005) The importance of non-photosynthetic pigments and cinnamic acid derivates in photoprotection. Agric Ecosyst Environ 106:135–146. doi:10.1016/j.agee.2004.10.002

    Article  CAS  Google Scholar 

  • Fedina I, Georgieva K, Velitchkova M, Grigorova I (2006) Effect of pre-treatment of barley seedlings with different salts on the level of UV-B induced and UV-B absorbing compounds. Environ Exp Bot 56:225–230. doi:10.1016/j.envexpbot.2005.02.006

    Article  CAS  Google Scholar 

  • Foyer C, Noctor G (2005) Oxidant and antioxidant signalling in plants; a re-evalution of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071. doi:10.1111/j.1365-3040.2005.01327.x

    Article  CAS  Google Scholar 

  • Frohnmeyer H, Staiger D (2003) Ultraviolet-B radiation-mediated responses in plants, balancing damage and protection. Plant Physiol 133:1420–1428. doi:10.1104/pp.103.030049

    Article  PubMed  CAS  Google Scholar 

  • Grill D, Pfeifhofer H, Tschulik A, Hellig K, Holzer K (1988) Thiol content of spruce needles at forest limits. Oecologia 76:294–297. doi:10.1007/BF00379966

    Article  Google Scholar 

  • Häder D-P, Kumar HD, Smith RC, Worrest RC (2007) Effects of solar UV radiation on aquatic ecosystems and interactions with climate change. Photochem Photobiol Sci 6:267–285. doi:10.1039/b700020k

    Article  PubMed  Google Scholar 

  • Hanson AD, Nelson CE, Eversen EH (1977) Evolution of free proline accumulation as an index of drought resistance using two contrasting barley cultivars. Crop Sci 17:720–726

    CAS  Google Scholar 

  • Ivanov SV, Kerchev PI (2007) Separation and quantification of the cellular thiol pool of pea plants treated with heat, salinity and atrazine. Phytochem Anal 18:283–290. doi:10.1002/pca.980

    Article  PubMed  CAS  Google Scholar 

  • Kinnunen H, Huttunen S, Laakso K (2001) UV absorbing compounds and waxes of Scots pine needles during a third growing season of supplemental UV-B. Environ Pollut 112:215–220. doi:10.1016/S0269-7491(00)00113-5

    Article  PubMed  CAS  Google Scholar 

  • Kliebenstein DJ (2004) Secondary metabolites and plant/environment interactions: a view through Arabidopsis thaliana tinged glasses. Plant Cell Environ 27:675–684. doi:10.1111/j.1365-3040.2004.01180.x

    Article  CAS  Google Scholar 

  • Lesniewska E, Adrian M, Klinguer A, Pugin A (2004) Cell wall modification in grapevine cells in response to UV stress investigated by atomic force microscopy. Ultramicroscopy 100:171–178. doi:10.1016/j.ultramic.2003.11.004

    Article  PubMed  CAS  Google Scholar 

  • Liu L, McClure JW (1995) Effects of UV-B on activities of enzymes of secondary phenolic metabolism in barley primary leaves. Physiol Plant 93:734–739. doi:10.1111/j.1399-3054.1995.tb05124.x

    Article  CAS  Google Scholar 

  • Parvanova D, Ivanov S, Konstantinova T, Karanov E, Atanassov A, Tsvetkov T et al (2004) Transgenic tobacco plants accumulating osmolytes show reduced oxidative damage under freezing stress. Plant Physiol Biochem 42:57–63. doi:10.1016/j.plaphy.2003.10.007

    Article  PubMed  CAS  Google Scholar 

  • Paul N (2001) Plant responses to UV-B: time to look beyond stratospheric ozone depletion? New Phytol 150:5–8. doi:10.1046/j.1469-8137.2001.00090.x

    Article  Google Scholar 

  • Procházková D, Wilhelmova N (2007) The capacity of antioxidant protection during modulated ageing of bean (Phaseolus vulgaris L.) cotyledon. 1. The antioxidant enzyme activities. Cell Biochem Funct 25:87–95. doi:10.1002/cbf.1271

    Article  PubMed  Google Scholar 

  • Rijstenbil JW (2005) UV- and salinity-induced oxidative effects in the marine diatom Cylindrotheca closterium during simulated emersion. Mar Biol (Berl) 147:1063–1073. doi:10.1007/s00227-005-0015-4

    Article  CAS  Google Scholar 

  • Saradhi P, Alia P, Arora S, Prasad KV (1995) Proline accumulates in plants exposed to UV radiation and protects them against UV induced peroxidation. Biochem Biophys Res Commun 209:1–5. doi:10.1006/bbrc.1995.1461

    Article  PubMed  CAS  Google Scholar 

  • Shama G, Alderson P (2005) UV hormesis in fruits: a concept ripe for commercialisation. Trends Food Sci Technol 16:128–136. doi:10.1016/j.tifs.2004.10.001

    Article  CAS  Google Scholar 

  • Shiu C-T, Lee T-M (2005) Ultraviolet-B-induced oxidative stress and responses of the ascorbate–glutathione cycle in a marine macroalga Ulva fasciata. J Exp Bot 56:2851–2865. doi:10.1093/jxb/eri277

    Article  PubMed  CAS  Google Scholar 

  • Stapleton AE (1992) Ultraviolet radiation and plants: burning questions. Plant Cell 4:1353–1358

    Article  PubMed  Google Scholar 

  • Swain T, Goldstein JL (1964) The quantitative analysis of phenolic compounds. In: Pridham JB (ed) Methods in polyphenol chemistry. Pergamon Press, Oxford, pp 131–146

    Google Scholar 

  • Tausz M, Ircelj H, Grill D (2004) The glutathione system as a stress marker in plant ecophysiology: is a stress-response concept valid? J Exp Bot 55:1955–1962. doi:10.1093/jxb/erh194

    Article  PubMed  CAS  Google Scholar 

  • Tegelberg R, Julkunen-Tiitto R, Aphalo DJ (2001) The effects of long term elevated UV-B on growth and phenolics of the field-grown silver birch (Betula pendula). Glob Change Biol 7:839–848. doi:10.1046/j.1354-1013.2001.00453.x

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. I. Vaseva and Prof. M. A. Hall for valuable comments and remarks. The encouragement received from Academician E. Karanov is much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zornitsa Katerova.

Additional information

Communicated by G. Bartosz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katerova, Z., Ivanov, S., Mapelli, S. et al. Phenols, proline and low-molecular thiol levels in pea (Pisum sativum) plants respond differently toward prolonged exposure to ultraviolet-B and ultraviolet-C radiations. Acta Physiol Plant 31, 111–117 (2009). https://doi.org/10.1007/s11738-008-0208-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-008-0208-9

Keywords

Navigation