Frontiers of Computer Science

, Volume 11, Issue 2, pp 332–346 | Cite as

Continuous optimization of interior carving in 3D fabrication

  • Yue Xie
  • Ye Yuan
  • Xiang Chen
  • Changxi Zheng
  • Kun Zhou
Research Article
  • 54 Downloads

Abstract

In this paper we propose an optimization framework for interior carving of 3D fabricated shapes. Interior carving is an important technique widely used in industrial and artistic designs to achieve functional purposes by hollowing interior shapes in objects. We formulate such functional purpose as the objective function of an optimization problem whose solution indicates the optimal interior shape. In contrast to previous volumetric methods, we directly represent the boundary of the interior shape as a triangular mesh. We use Eulerian semiderivative to relate the time derivative of the object function to a virtual velocity field and iteratively evolve the interior shape guided by the velocity field with surface tracking. In each iteration, we compute the velocity field guaranteeing the decrease of objective function by solving a linear programming problem. We demonstrate this general framework in a novel application of designing objects floating in fluid and two previously investigated applications, and print various optimized objects to verify its effectiveness.

Keywords

computer graphics 3D printing interior carving shape optimization Eulerian semiderivative 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11704_2016_5465_MOESM1_ESM.ppt (980 kb)
Supplementary material, approximately 979 KB.

References

  1. 1.
    Prévost R, Whiting E, Lefebvre S, Sorkine-Hornung O. Make it stand: balancing shapes for 3D fabrication. ACM Transactions on Graphics, 2013, 32(4): 81CrossRefMATHGoogle Scholar
  2. 2.
    Bächer M, Whiting E, Bickel B, Sorkine-Hornung O. Spin-it: optimizing moment of inertia for spinnable objects. ACM Transactions on Graphics, 2014, 33(4): 96CrossRefGoogle Scholar
  3. 3.
    Christiansen A N, Schmidt R, Bærentzen J A. Automatic balancing of 3D models. Computer-Aided Design, 2015, 58: 236–241CrossRefGoogle Scholar
  4. 4.
    Chen S, Torterelli D. Three-dimensional shape optimization with variational geometry. Structural Optimization, 1997, 13(2): 81–94CrossRefGoogle Scholar
  5. 5.
    Braibant V, Fleury C. Shape optimal design using B-splines. Computer Methods in Applied Mechanics and Engineering, 1984, 44(3): 247–267CrossRefMATHGoogle Scholar
  6. 6.
    Xu D, Ananthasuresh G K. Freeform skeletal shape optimization of compliant mechanisms. Journal of Mechanical Design, 2003, 125(2): 253–261CrossRefGoogle Scholar
  7. 7.
    Bendsoe M P. Optimal shape design as a material distribution problem. Structural Optimization, 1989, 1(4): 193–202CrossRefGoogle Scholar
  8. 8.
    Wang M Y, Wang X M, Guo D M. A level set method for structural topology optimization. Computer Methods in Applied Mechanics and Engineering, 2003, 192(1): 227–246MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Zhou M, Pagaldipti N, Thomas H, Shyy Y. An integrated approach to topology, sizing, and shape optimization. Structural and Multidisciplinary Optimization, 2004, 26(5): 308–317CrossRefGoogle Scholar
  10. 10.
    Haftka R T, Grandhi R V. Structural shape optimizationa——a survey. Computer Methods in Applied Mechanics and Engineering, 1986, 57(1): 91–106MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Saitou K, Izui K, Nishiwaki S, Papalambros P. A survey of structural optimization in mechanical product development. Journal of Computing and Information Science in Engineering, 2005, 5(3): 214–226CrossRefGoogle Scholar
  12. 12.
    Luo L, Baran I, Rusinkiewicz S, Matusik W. Chopper: partitioning models into 3D-printable parts. ACM Transactions on Graphics, 2012, 31(6)Google Scholar
  13. 13.
    Attene M. Shapes in a box: disassembling 3D objects for efficient packing and fabrication. Computer Graphics Forum, 2015Google Scholar
  14. 14.
    Zhou Y B, Sueda S, Matusik W, Shamir A. Boxelization: folding 3D objects into boxes. ACM Transactions on Graphics, 2014, 33(4): 71Google Scholar
  15. 15.
    Bickel B, Kaufmann P, Skouras M, Thomaszewski B, Bradley D, Beeler T, Jackson P,Marschner S, Matusik W, GrossM. Physical face cloning. ACM Transactions on Graphics, 2012, 31(4): 118CrossRefGoogle Scholar
  16. 16.
    Skouras M, Thomaszewski B, Coros S, Bickel B, Gross M. Computational design of actuated deformable characters. ACM Transactions on Graphics, 2013, 32(4): 82CrossRefGoogle Scholar
  17. 17.
    Chen X, Zheng C, Xu W, Zhou K. An asymptotic numerical method for inverse elastic shape design. ACM Transactions on Graphics, 2014, 33(4): 95Google Scholar
  18. 18.
    Bächer M, Bickel B, James D L, Pfister H. Fabricating articulated characters from skinned meshes. ACM Transactions on Graphics, 2012, 31(4): 47CrossRefGoogle Scholar
  19. 19.
    Calì J, Calian D A, Amati C, Kleinberger R, Steed A, Kautz J, Weyrich T. 3D-printing of non-assembly, articulated models. ACM Transactions on Graphics, 2012, 31(6): 130CrossRefGoogle Scholar
  20. 20.
    Zhu L, Xu W, Snyder J, Liu Y, Wang G, Guo B. Motion-guided mechanical toy modeling. ACM Transactions on Graphics, 2012, 31(6): 127CrossRefGoogle Scholar
  21. 21.
    Coros S, Thomaszewski B, Noris G, Sueda S, Forberg M, Sumner R W, Matusik W, Bickel B. Computational design of mechanical characters. ACM Transactions on Graphics, 2013, 32(4): 83CrossRefMATHGoogle Scholar
  22. 22.
    Umetani N, Igarashi T, Mitra N J. Guided exploration of physically valid shapes for furniture design. ACM Transactions on Graphics, 2012, 31(4): 86CrossRefGoogle Scholar
  23. 23.
    Vouga E, Höbinger M, Wallner J, Pottmann H. Design of selfsupporting surfaces. ACM Transactions on Graphics, 2012, 31(4): 87CrossRefGoogle Scholar
  24. 24.
    Panozzo D, Block P, Sorkine-Hornung O. Designing unreinforced masonry models. ACM Transactions on Graphics, 2013, 32(4): 91MATHGoogle Scholar
  25. 25.
    De Goes F, Alliez P, Owhadi H, Desbrun M. On the equilibrium of simplicial masonry structures. ACM Transactions on Graphics, 2013, 32(4): 93MATHGoogle Scholar
  26. 26.
    Wang W, Wang T Y, Yang Z, Liu L, Tong X, Tong W, Deng J, Chen F, Liu X. Cost-effective printing of 3D objects with skin-frame structures. ACM Transactions on Graphics, 2013, 32(6): 177Google Scholar
  27. 27.
    Lu L, Sharf A, Zhao H, Wei Y, Fan Q, Chen X, Savoye Y, Tu C, CohenOr D, Chen B. Build-to-last: strength to weight 3D printed objects. ACM Transactions on Graphics, 2014, 33(4): 97Google Scholar
  28. 28.
    Stava O, Vanek J, Benes B, Carr N, Měch R. Stress relief: improving structural strength of 3D printable objects. ACM Transactions on Graphics, 2012, 31(4): 48CrossRefGoogle Scholar
  29. 29.
    Zhou Q, Panetta J, Zorin D. Worst-case structural analysis. ACM Transactions on Graphics, 2013, 32(4): 137MATHGoogle Scholar
  30. 30.
    Xie Y, Xu W, Yang Y, Guo X, Zhou K. Agile structural analysis for fabrication-aware shape editing. Computer Aided Geometric Design, 2015, 35: 163–179MathSciNetCrossRefGoogle Scholar
  31. 31.
    Musialski P, Auzinger T, Birsak M, Wimmer M, Kobbelt L. Reducedorder shape optimization using offset surfaces. ACM Transactions on Graphics, 2015, 34(4): 102CrossRefMATHGoogle Scholar
  32. 32.
    Delfour M C, Zolésio J P. Shapes and Geometries: Metrics, Analysis, Differential Calculus, and Optimization. Philadelphia: Siam, 2011CrossRefMATHGoogle Scholar
  33. 33.
    Brakke K A. The surface evolver. Experimental Mathematics, 1992, 1(2): 141–165MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Sethian J A. Level set methods and fast marching methods. Journal of Computing and Information Technology, 2003, 11(1): 1–2CrossRefGoogle Scholar
  35. 35.
    Nesterov Y, Nemirovskii A. Interior-Point Polynomial Algorithms in Convex Programming. Philadelphia: Siam, 1994CrossRefMATHGoogle Scholar
  36. 36.
    Makhorin A, Andrew O. GLPK (GNU linear programming kit). 2008Google Scholar
  37. 37.
    Osher S, Fedkiw R. Level set methods and dynamic implicit surfaces. Surfaces, 2002, 44Google Scholar
  38. 38.
    Brochu T, Bridson R. Robust topological operations for dynamic explicit surfaces. SIAM Journal on Scientific Computing, 2009, 31(4): 2472–2493MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Sorkine O, Cohen-Or D. Least-squares meshes. In: Proceedings of Shape Modeling Applications. 2004Google Scholar
  40. 40.
    McGrail S. Boats of the World: from the Stone Age to Medieval Times. Oxford University Press, 2004Google Scholar
  41. 41.
    Ascher U M, Chin H, Reich S. Stabilization of DAEs and invariant manifolds. Numerische Mathematik, 1994, 67(2): 131–149MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Mégel J, Kliava J. Metacenter and ship stability. American Journal of Physics, 2010, 78(7): 738–747CrossRefGoogle Scholar
  43. 43.
    Byrd R H, Nocedal J, Waltz R A. Knitro: an integrated package for nonlinear optimization. In: Di Pillo G, Roma M, eds. Large-Scale Nonlinear Optimization, Vol 83. Springer, 2006, 35–59MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Yue Xie
    • 1
  • Ye Yuan
    • 1
  • Xiang Chen
    • 1
  • Changxi Zheng
    • 2
  • Kun Zhou
    • 1
  1. 1.State Key Lab of CAD&CGZhejiang UniversityHangzhouChina
  2. 2.Columbia UniversityNew YorkUSA

Personalised recommendations