Skip to main content
Log in

Bioactive properties of Kilka (Clupeonella cultriventris caspi) fish protein hydrolysates

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Whole common Kilka fish was hydrolyzed separately using four commercial enzymes, Alcalase, Neutrase, Protamex at 50 °C and Pepsin at 37 °C for 30, 60 and 90 min. Degree of hydrolysis, angiotensin-I-converting enzyme (ACE) inhibitory activity and antimicrobial activity of each hydrolysate against Gram-negative (Escherichia coli, Salmonella enteritidis) and Gram-positive (Staphylococcus aureus, Listeria innocua) bacteria were studied. Results showed that the degree of hydrolysis for all enzymes was in the range of 2.63–3.36%. Electrophoresis profiles of the Kilka protein hydrolysates showed that most of produced peptides were in the range of 30 D but Alcalase and Neutrase had a better performance in the production of low molecular weight peptides in the range of 10 D. This led to increase the antimicrobial activity against the examined bacteria at the concentration of 200 µg/mL peptide solution. The Neutrase enzyme produced hydrolysate with the highest ACE inhibitory activity (53% ± 1.8 at 500 µg/mL). Antimicrobial activity of Kilka protein hydrolysates using Protamex and Pepsin was lower than the others due to lack of considerable amount of small peptides. The current research has demonstrated that the peptides derived from the enzymatic hydrolysis of Kilka fish protein in optimum conditions are capable of being converted to antimicrobial and antihypertensive agents to be used in functional foods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. S. Saidi, A. Deratani, R.B. Amar, M.P. Belleville, Fractionation of a tuna dark muscle hydrolysate by a two-step membrane process. Sep. Purif. Technol. 108, 28–36 (2013)

    Article  CAS  Google Scholar 

  2. J. Roslan, S.M.M. Kamal, K.F.M. Yunos, N. Abdullah, Assessment on multilayer ultrafiltration membrane for fractionation of tilapia by-product protein hydrolysate with angiotensin I-converting enzyme (ACE) inhibitory activity. Sep. Purif. Technol. 173, 250–257 (2017)

    Article  CAS  Google Scholar 

  3. H. Korhonen, A. Pihlanto, Bioactive peptides: production and functionality. Int. Dairy J. 16(9), 945–960 (2006)

    Article  CAS  Google Scholar 

  4. P.A. Harnedy, R.J. FitzGerald, Bioactive peptides from marine processing waste and shellfish: a review. J. Funct. Foods 4(1), 6–24 (2012)

    Article  CAS  Google Scholar 

  5. D.H. Ngo, I. Wijesekara, T.S. Vo, Q. Van Ta, S.K. Kim, Marine food-derived functional ingredients as potential antioxidants in the food industry: an overview. Food Res. Int. 44(2), 523–529 (2011)

    Article  CAS  Google Scholar 

  6. T. Rustad, M. Hayes, Marine bioactive peptides and protein hydrolysates: generation, isolation procedures, and biological and chemical characterizations, in Marine Bioactive Compounds, ed. by M. Hayes (Springer, Boston, 2012), pp. 99–113

    Chapter  Google Scholar 

  7. S. Raghavan, H.G. Kristinsson, ACE-inhibitory activity of tilapia protein hydrolysates. Food Chem. 117(4), 582–588 (2009)

    Article  CAS  Google Scholar 

  8. L. Beaulieu, J. Thibodeau, M. Desbiens, R. Saint-Louis, C. Zatylny-Gaudin, S. Thibault, Evidence of antibacterial activities in peptide fractions originating from snow crab (Chionoecetes opilio) by-products. Probiotics Antimicrob. Proteins 2(3), 197–209 (2010)

    Article  Google Scholar 

  9. R.E. Hancock, H.G. Sahl, Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol. 24(12), 1551–1557 (2006)

    Article  CAS  Google Scholar 

  10. M. Charlet, S. Chernysh, H. Philippe, C. Hetru, J.A. Hoffmann, P. Bulet, Innate immunity isolation of several cysteine-rich antimicrobial peptides from the blood of a mollusc, Mytilus edulis. J. Biol. Chem. 271(36), 21808–21813 (1996)

    Article  CAS  Google Scholar 

  11. H.K. Kang, C.H. Seo, Y. Park, Marine peptides and their anti-infective activities. Mar. Drugs 13(1), 618–654 (2015)

    Article  Google Scholar 

  12. M.R. Soleimani, S.F. Hosseini, M. Nikkhah, Evaluation of antioxidant activity of protein hydrolysate from common kilka (Clupeonella cultriventris caspia). J. Fish. Sci. Technol. 5(3), 95–108 (2016)

    Google Scholar 

  13. H. Fazli, Some environmental factors effects on species composition, catch and CPUE of kilkas in the Caspian Sea. ECOPERSIA 15(2), 157–164 (2011)

    Google Scholar 

  14. M. Ovissipour, B. Rasco, S.G. Shiroodi, M. Modanlow, S. Gholami, M. Nemati, Antioxidant activity of protein hydrolysates from whole anchovy sprat (Clupeonella engrauliformis) prepared using endogenous enzymes and commercial proteases. J. Sci. Food Agric. 93(7), 1718–1726 (2013)

    Article  CAS  Google Scholar 

  15. B. Shabanpour, A. Shabani, S. Moini, M. Hamedi, M. Poorkabireh, The effect of different washing methods on chemical and gel forming properties of Kilka surimi. Pajouhesh and Sazandegi 81(4), 84–92 (2007). (in Persian)

    Google Scholar 

  16. AOAC International, W. Horwitz, G.W. Latimer, Official Methods of Analysis of AOAC International, 18th edn. (Mary land, Gaithersburg, 2005)

    Google Scholar 

  17. N.T. Hoyle, J.H. Merritt, Quality of fish protein hydrolysate from Herring (Clupea harengus). J. Food Sci. 59, 76–79 (1994)

    Article  CAS  Google Scholar 

  18. M. Bradford, A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72, 248–254 (1976)

    Article  CAS  Google Scholar 

  19. H. Schägger, G. Von Jagow, Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166(2), 368–379 (1987)

    Article  Google Scholar 

  20. NCCLS. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: approved standard, 5th edn., NCCLS document M7-A5, ISBN 1-56238-394-9. NCCLS, Pennsylvania, USA, 2000

  21. D. Cushman, H. Cheung, Spectrophotometric assay and properties of the angiotensin converting enzyme of rabbit lung. Biochem. Pharmacol. 20(7), 1637–1648 (1971)

    Article  CAS  Google Scholar 

  22. E.S. Kechaou, J. Dumay, C. Donnay-Moreno, P. Jaouen, J.P. Gouygou, J.P. Bergé, R.B. Amar, Enzymatic hydrolysis of cuttlefish (Sepia officinalis) and sardine (Sardina pilchardus) viscera using commercial proteases: effects on lipid distribution and amino acid composition. J. Biosci. Bioeng. 107(2), 158–164 (2009)

    Article  CAS  Google Scholar 

  23. N. Ennaas, R. Hammami, L. Beaulieu, I. Fliss, Production of antibacterial fraction from Atlantic mackerel (Scomber scombrus) and its processing by-products using commercial enzymes. Food Bioprod. Process. 96, 145–153 (2015)

    Article  CAS  Google Scholar 

  24. F. Guerard, L. Guimas, A. Binet, Production of tuna waste hydrolysates by a commercial neutral protease preparation. J. Mol. Catal. B 19, 489–498 (2002)

    Article  Google Scholar 

  25. N. Bhaskar, T. Benila, C. Radha, R.G. Lalitha, Optimization of enzymatic hydrolysis of visceral waste proteins of Catla (Catla catla) for preparing protein hydrolysate using a commercial protease. Bioresour. Technol. 99(2), 335–343 (2008)

    Article  CAS  Google Scholar 

  26. J. Dumay, C. Donnay-Moreno, G. Barnathan, P. Jaouen, J.P. Berge, Improvement of lipid and phospholipid recoveries from sardine (Sardina pilchardus) viscera using industrial proteases. Process Biochem. 41(11), 2327–2332 (2006)

    Article  CAS  Google Scholar 

  27. J. Pedroche, M.M. Yust, J. Girón-Calle, M. Alaiz, F. Millán, J. Vioque, Utilisation of chickpea protein isolate for production of peptides with angiotensin I-converting enzyme (ACE)-inhibitory activity. J. Sci. Food Agric. 82(9), 960–965 (2002)

    Article  CAS  Google Scholar 

  28. Ž. Vaštag, L. Popović, S. Popović, V. Krimer, D. Peričin, Production of enzymatic hydrolysates with antioxidant and angiotensin-I converting enzyme inhibitory activity from pumpkin oil cake protein isolate. Food Chem. 124(4), 1316–1321 (2011)

    Article  Google Scholar 

  29. A. Alemán, E. Pérez-Santín, S. Bordenave-Juchereau, I. Arnaudin, M.C. Gómez-Guillén, P. Montero, Squid gelatin hydrolysates with antihypertensive, anticancer and antioxidant activity. Food Res. Int. 44(4), 1044–1051 (2011)

    Article  Google Scholar 

  30. J.X. Huo, Z.H.A.O. Zheng, Study on enzymatic hydrolysis of Gadus morrhua skin collagen and molecular weight distribution of hydrolysates. Agric. Sci. China 8(6), 723–729.‏ (2009)

    Article  CAS  Google Scholar 

  31. S. He, C. Franco, W. Zhang, Functions, applications and production of protein hydrolysates from fish processing co-products (FPCP). Food Res. Int. 50(1), 28–297 (2013)

    Article  Google Scholar 

  32. M. Dathe, T. Wieprecht, Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. Biochim. Biophys. Acta (BBA)-Biomembr. 1462(1), 71–87 (1999)

    Article  CAS  Google Scholar 

  33. R. Di Bernardini, P. Harnedy, D. Bolton, J. Kerry, E. O’Neill, A.M. Mullen, M. Hayes, Antioxidant and antimicrobial peptidic hydrolysates from muscle protein sources and by-products. Food Chem. 124(4), 1296–1307 (2011)

    Article  Google Scholar 

  34. R.E.W. Hancock, A. Patrzykat, Clinical development of cationic antimicrobial peptides: from natural to novel antibiotics. Curr. Drug Targets-Infect. Disord. 2(1), 79–83 (2002)

    Article  CAS  Google Scholar 

  35. H. Jenssen, P. Hamill, R.E. Hancock, Peptide antimicrobial agents. Clin. Microbiol. Rev. 19(3), 491–511 (2006)

    Article  CAS  Google Scholar 

  36. R. Balti, N. Nedjar-Arroume, A. Bougatef, D. Guillochon, M. Nasri, Three novel angiotensin I-converting enzyme (ACE) inhibitory peptides from cuttlefish (Sepia officinalis) using digestive proteases. Food Res. Int. 43(4), 1136–1143 (2010)

    Article  CAS  Google Scholar 

  37. A.E. Theodore, H.G. Kristinsson, Angiotensin converting enzyme inhibition of fish protein hydrolysates prepared from alkaline-aided channel catfish protein isolate. J. Sci. Food Agric. 87(12), 2353–2357 (2007)

    Article  CAS  Google Scholar 

  38. W.K. Jung, E. Mendis, J.Y. Je, P.J. Park, B.W. Son, H.C. Kim, Y.K. Choi, S.K. Kim, Angiotensin I-converting enzyme inhibitory peptide from yellowfin sole (Limanda aspera) frame protein and its antihypertensive effect in spontaneously hypertensive rats. Food Chem. 94(1), 26–32 (2006)

    Article  CAS  Google Scholar 

  39. J.Y. Je, P.J. Park, J.Y. Kwon, S.K. Kim, A novel angiotensin I converting enzyme inhibitory peptide from Alaska pollack (Theragra chalcogramma) frame protein hydrolysate. J. Agric. Food Chem. 52(26), 7842–7845 (2004)

    Article  CAS  Google Scholar 

  40. A. Fahmi, S. Morimura, H.C. Guo, T. Shigematsu, K. Kida, Y. Uemura, Production of angiotensin I converting enzyme inhibitory peptides from sea bream scales. Process Biochem. 39(10), 1195–1200 (2004)

    Article  CAS  Google Scholar 

  41. B.A. Murray, R.J. FitzGerald, Angiotensin converting enzyme inhibitory peptides derived from food proteins: biochemistry, bioactivity and production. Current pharmaceutical design 13(8), 773–791 (2007)

    Article  CAS  Google Scholar 

  42. M. del Mar Contreras, R. Carrón, M.J. Montero, M. Ramos, I. Recio, Novel casein-derived peptides with antihypertensive activity. Int. Dairy J. 19(10), 566–573 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Ferdowsi University of Mashhad-Research Affairs (contract No. 40890).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad B. Habibi Najafi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qara, S., Habibi Najafi, M.B. Bioactive properties of Kilka (Clupeonella cultriventris caspi) fish protein hydrolysates. Food Measure 12, 2263–2270 (2018). https://doi.org/10.1007/s11694-018-9843-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-018-9843-z

Keywords

Navigation