Skip to main content

Advertisement

Log in

Die 3D-Bewegungsanalyse der oberen Extremität und ihre Anwendung in der Schulterendoprothetik

3D motion analysis of the upper extremities and its application in shoulder arthroplasty

  • Originalarbeit
  • Published:
Obere Extremität Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Ziel dieser Studie war die Ermittlung des Bewegungsausmaßes von Schulter und Ellenbogen bei Alltagsbewegungen sowie die Propriozeptionsfähigkeit vor und nach Schulterprothesen-Implantation anhand der 3D-Bewegungsanalyse.

Material und Methoden

Ein neues, markerbasiertes 3D-Modell der oberen Extremität wurde verwendet. Das Bewegungsausmaß des Schulter- und Ellenbogengelenks wurde standardisiert an 7 Probanden bei 10 Alltagsbewegungen ermittelt.

Die Propriozeptionsmessungen wurden an 26 Patienten mit degenerativen Erkrankungen des Schultergelenkes durchgeführt. Bei 13 Patienten wurde eine Totalprothese, bei 8 eine Hemiprothese und bei 5 eine Inverse Schulterprothese implantiert.

Ergebnisse

Zur Durchführung der 10 Alltagsbewegungen wurde im Schultergelenk im Mittel eine Ante-/Retroversion von 100°, eine Ab-/Adduktion von 89° und eine Außen-/Innenrotation von 205° benötigt. Im Ellenbogen benötigten die Probanden im Mittel ein Bewegungsausmaß bei Extension/Flexion von 110° und bei Pro- und Supination von 127°.

Bei den Propriozeptionsmessungen verschlechterte sich im Gesamtpatientenkollektiv 6 Monate nach Endoprothesen-Implantation der Gesamtpropriozeptionswert signifikant um 1,1° von 7,0° präoperativ auf 8,1° postoperativ (p<0,05). Tendenziell ist von einer postoperativen Verschlechterung bei allen Einzelbewegungen und bei der Gesamtpropriozeption auszugehen. Die Tendenz der Verschlechterung der Propriozeption ist auch bei der Betrachtung der einzelnen Implantatgruppen festzustellen.

Schlussfolgerung

Mit der 3D-Bewegungsanalyse können komplex-dynamische Bewegungen und Gelenkwinkel der oberen Extremität zu jedem beliebigen Zeitpunkt erfasst werden. Weiterhin konnten wir eine Verschlechterung der Propriozeption in der Frühphase nach Schulterprothesen-Implantation feststellen.

Abstract

Background

The aim of this study was to analyze the range of motion of the shoulder and elbow during activities of daily living (ADL). Moreover, proprioception after shoulder arthroplasty was assessed.

Materials and methods

A new, marker-based 3D model for the upper extremities was used. Ranges of motion of the shoulder and elbow in 10 ADL were measured in a standardized fashion in seven subjects. Proprioception was measured in 26 patients with degenerative pathologies of the shoulder joint. A total of 13 patients received total shoulder replacement, 8 hemiarthroplasty, and 5 reverse prosthesis.

Results

A mean shoulder anteversion/retroversion of 100°, an abduction/adduction of 89°, and an external/ internal rotation of 205° were necessary to perform the ADL. The mean elbow extension/flexion was 110° and mean pro-/supination 127°.

For the whole cohort, the proprioception value decreased 6 months after implantation of a shoulder prosthesis from 7.0° preoperatively to 8.1° postoperatively (p<0.05). There was a postoperative decrease of proprioception for all movements and for overall proprioception, but this was not significant. With regard to the different implants, a decrease of proprioception was also found, without reaching significance.

Conclusion

Complex, dynamic movements and joint angles of the upper extremity can be recorded using 3D motion analysis at any time. In contrast to other studies, decreased proprioception was found in the short term after shoulder prosthesis implantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Armstrong AD, MacDermid JC, Chinchalkar S et al (1998) Reliability of range-of-motion measurement in the elbow and forearm. J Shoulder Elbow Surg 7:573–580

    Article  CAS  PubMed  Google Scholar 

  2. Boone DC, Azen SP, Lin CM et al (1978) Reliability of goniometric measurements. Phys Ther 58:1355–1390

    CAS  PubMed  Google Scholar 

  3. Boone DC, Azen SP (1979) Normal range of motion of joints in male subjects. J Bone Joint Surg Am 61:756–759

    CAS  PubMed  Google Scholar 

  4. Gunal I, Kose N, Erdogan O et al (1996) Normal range of motion of the joints of the upper extremity in male subjects, with special reference to side. J Bone Joint Surg Am 78:1401–1404

    CAS  PubMed  Google Scholar 

  5. Ramakrishnan HK, Kadaba MP (1991) On the estimation of joint kinematics during gait. J Biomech 24:969–977

    Article  CAS  PubMed  Google Scholar 

  6. Kadaba MP, Ramakrishnan HK, Wootten ME (1990) Measurement of lower extremity kinematics during level walking. J Orthop Res 8:383–392

    Article  CAS  PubMed  Google Scholar 

  7. Apkarian J, Naumann S, Cairns B (1989) A three-dimensional kinematic and dynamic model of the lower limb. J Biomech 22:143–155

    Article  CAS  PubMed  Google Scholar 

  8. Simon J, Doederlein L, McIntosh AS et al (2006) The Heidelberg foot measurement method: development, description and assessment. Gait Posture 23:411–424

    Article  CAS  PubMed  Google Scholar 

  9. Rau G, Disselhorst-Klug C, Schmidt R (2000) Movement biomechanics goes upwards: from the leg to the arm. J Biomech 33:1207–1216

    Article  CAS  PubMed  Google Scholar 

  10. Buckley MA, Yardley A, Johnson GR, Carus DA (1996) Dynamics of the upper limb during performance of the tasks of everyday living–a review of the current knowledge base. Proc Inst Mech Eng [H] 210:241–247

    Google Scholar 

  11. Mackey AH, Walt SE, Lobb GA, Stott NS (2005) Reliability of upper and lower limb three-dimensional kinematics in children with hemiplegia. Gait Posture 22:1–9

    Article  PubMed  Google Scholar 

  12. Murphy MA, Sunnerhagen KS, Johnels B, Willen C (2006) Three-dimensional kinematic motion analysis of a daily activity drinking from a glass: a pilot study. J Neuroengineering Rehabil 3:18

    Article  Google Scholar 

  13. Henmi S, Yonenobu K, Masatomi T, Oda K (2006) A biomechanical study of activities of daily living using neck and upper limbs with an optical three-dimensional motion analysis system. Mod Rheumatol 16:289–293

    Article  PubMed  Google Scholar 

  14. Fitoussi F, Diop A, Maurel N et al (2006) Kinematic analysis of the upper limb: a useful tool in children with cerebral palsy. J Pediatr Orthop B 15:247–256

    PubMed  Google Scholar 

  15. Mosqueda T, James MA, Petuskey K et al (2004) Kinematic assessment of the upper extremity in brachial plexus birth palsy. J Pediatr Orthop 24:695–699

    PubMed  Google Scholar 

  16. Vasen AP, Lacey SH, Keith MW, Shaffer JW (1995) Functional range of motion of the elbow. J Hand Surg [Am] 20:288–292

    Google Scholar 

  17. Morrey BF, Askew LJ, Chao EY (1981) A biomechanical study of normal functional elbow motion. J Bone Joint Surg Am 63:872–877

    CAS  PubMed  Google Scholar 

  18. Sherrington CS (1906) On the proprioceptive system, especially in its reflex aspect. Brain 29:1–28

    Article  Google Scholar 

  19. Burgess PR, Wei JY, Clark FJ, Simon J (1982) Signaling of kinesthetic information by peripheral sensory receptors. Annu Rev Neurosci 5:171–187

    Article  CAS  PubMed  Google Scholar 

  20. Clark FJ, Burgess RC, Chapin JW, Lipscomb WT (1985) Role of intramuscular receptors in the awareness of limb position. J Neurophysiol 54:1529–1540

    CAS  PubMed  Google Scholar 

  21. Riemann BL, Lephart SM (2002) The sensorimotor system, part I: the physiologic basis of functional joint stability. J Athl Train 37:71–79

    PubMed  Google Scholar 

  22. Riemann BL, Lephart SM (2002) The sensorimotor system, part II: the role of proprioception in motor control and functional joint stability. J Athl Train 37:80–84

    PubMed  Google Scholar 

  23. Hedtmann A, Heers G (2001) Principles of shoulder prosthesis implantation. Orthopäde 30:354–362

    Article  CAS  PubMed  Google Scholar 

  24. Aydin T, Yildiz Y, Yanmis I et al (2001) Shoulder proprioception: a comparison between the shoulder joint in healthy and surgically repaired shoulders. Arch Orthop Trauma Surg 121:422–425

    Article  CAS  PubMed  Google Scholar 

  25. Barden JM, Balyk R, Raso VJ et al (2004) Dynamic upper limb proprioception in multidirectional shoulder instability. Clin Orthop Relat Res 181–189

  26. Blackburn TA, Guido JA (2000) Rehabilitation after ligamentous and labral surgery of the shoulder: guiding concepts. J Athl Train 35:373–381

    PubMed  Google Scholar 

  27. Edmonds G, Kirkley A, Birmingham TB, Fowler PJ (2003) The effect of early arthroscopic stabilization compared to nonsurgical treatment on proprioception after primary traumatic anterior dislocation of the shoulder. Knee Surg Sports Traumatol Arthrosc 11:116–121

    PubMed  Google Scholar 

  28. Jerosch J, Steinbeck J, Schaphorn G (1998) Results of posterior inferior capsular shift in posterior shoulder instability. Unfallchirurg 101:755–761

    Article  CAS  PubMed  Google Scholar 

  29. Potzl W, Thorwesten L, Gotze C et al (2004) Proprioception of the shoulder joint after surgical repair for Instability: a long-term follow-up study. Am J Sports Med 32:425–430

    Article  PubMed  Google Scholar 

  30. Tibone JE, Fechter J, Kao JT (1997) Evaluation of a proprioception pathway in patients with stable and unstable shoulders with somatosensory cortical evoked potentials. J Shoulder Elbow Surg 6:440–443

    Article  CAS  PubMed  Google Scholar 

  31. Warner JJ, Lephart S, Fu FH (1996) Role of proprioception in pathoetiology of shoulder instability. Clin Orthop Relat Res 35–39

  32. Zuckerman JD, Gallagher MA, Cuomo F, Rokito A (2003) The effect of instability and subsequent anterior shoulder repair on proprioceptive ability. J Shoulder Elbow Surg 12:105–109

    Article  PubMed  Google Scholar 

  33. Cuomo F, Birdzell MG, Zuckerman JD (2005) The effect of degenerative arthritis and prosthetic arthroplasty on shoulder proprioception. J Shoulder Elbow Surg 14:345–348

    Article  PubMed  Google Scholar 

  34. Rettig O, Wolf S (2004) Upper extremity – optical marker based joint center calculation and elbow flexion angle determination. Gait Posture 20S:105

    Google Scholar 

  35. Rettig O, Wolf S (2007) Practical details and experiences of shoulder joint center (SJC) estimation using a least-squares functional method. GCMAS Meeting Podium presentation

  36. Raiss P, Rettig O, Wolf S et al (2007) Range of motion of shoulder and elbow in activities of daily life in 3D motion analysis. Z Orthop Unfall 145:493–498

    Article  CAS  PubMed  Google Scholar 

  37. Sangeux M, Marin F, Charleux F (2006) Quantification of the 3D relative movement of external marker sets vs. bones based on magnetic resonance imaging. Clin Biomech (Bristol, Avon)

  38. Benoit DL, Ramsey DK, Lamontagne M et al (2005) Effect of skin movement artifact on knee kinematics during gait and cutting motions measured in vivo. Gait Posture 24:152–164

    Article  PubMed  Google Scholar 

  39. Cerveri P, Pedotti A, Ferrigno G (2005) Kinematical models to reduce the effect of skin artifacts on marker-based human motion estimation. J Biomech 38:2228–2236

    Article  CAS  PubMed  Google Scholar 

  40. Reinschmidt C, Bogert AJ van den, Nigg BM et al (1997) Effect of skin movement on the analysis of skeletal knee joint motion during running. J Biomech 30:729–732

    Article  CAS  PubMed  Google Scholar 

  41. Pap G, Machner A, Wissl H, Awiszus F (2000) 3-dimensional image analysis of the shoulder joint–a new method for characterizing parameters of shoulder joint function. Z Orthop Ihre Grenzgeb 138:344–348

    Article  CAS  PubMed  Google Scholar 

  42. Leroux JL, Micallef JP, Bonnel F, Blotman F (1992) Rotation-abduction analysis in 10 normal and 20 pathologic shoulders. Elite system application. Surg Radiol Anat 14:307–313

    Article  CAS  PubMed  Google Scholar 

  43. American Academy of Orthopaedic Surgeons (1965) Joint motion: method of measuring and recording. The American Academy of Orthopaedic Surgeons, Chicago

  44. Triffitt PD (1998) The relationship between motion of the shoulder and the stated ability to perform activities of daily living. J Bone Joint Surg Am 80:41–46

    CAS  PubMed  Google Scholar 

  45. Jerosch J, Prymka M (1996) Proprioception and joint stability. Knee Surg Sports Traumatol Arthrosc 4:171–179

    Article  CAS  PubMed  Google Scholar 

  46. Riemann BL, Myers JB, Lephart SM (2002) Sensorimotor system measurement techniques. J Athl Train 37:85–98

    PubMed  Google Scholar 

  47. Habermeyer P, Ebert T (1999) Current status and perspectives of shoulder replacement. Unfallchirurg 102:668–683

    Article  CAS  PubMed  Google Scholar 

  48. Seebauer L, Walter W, Keyl W (2005) Reverse total shoulder arthroplasty for the treatment of defect arthropathy. Operat Orthop Traumatol 17:1–24

    Article  Google Scholar 

  49. Melzack R (2001) Pain and the neuromatrix in the brain. J Dent Educ 65:1378–1382

    CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Raiß.

Additional information

Die Arbeit wurde mit dem Perthes Preis der DVSE 2008 ausgezeichnet.

Wir danken der Deutsche Arthrose-Hilfe e.V. für die Unterstützung dieser Studie.

*Teile dieser Arbeit wurden bereits in anderen Zeitschriften publiziert:

1. Das Bewegungsausmaß der Schulter und des Ellenbogens bei Alltagsbewegungen in der 3D Bewegungsanalyse. Raiss P, Rettig O, Wolf S, Loew M, Kasten P. Z Orthop Unfall. 2007 Jul-Aug;145(4):493–8.

2. Proprioception in total, hemi- and reverse shoulder arthroplasty in 3D motion analyses: a prospective study. Kasten P, Maier M, Rettig O, Raiss P, Wolf S, Loew M. Int Orthop. 2008 Oct 28. [Epub ahead of print]

3. Three-dimensional motion analysis of compensatory movements in patients with radioulnar synostosis performing activities of daily living. Kasten P, Rettig O, Loew M, Wolf S, Raiss P. J Orthop Sci. 2009 May;14(3):307–12.

4. A new kinematic model of the upper extremity based on functional joint parameter determination for shoulder and elbow. Rettig O, Fradet L, Kasten P, Raiss P, Wolf SI. Gait Posture. 2009 Aug 1. [Epub ahead of print]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raiß, P., Maier, M., Wolf, S. et al. Die 3D-Bewegungsanalyse der oberen Extremität und ihre Anwendung in der Schulterendoprothetik. Obere Extremität 5, 27–36 (2010). https://doi.org/10.1007/s11678-010-0059-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11678-010-0059-z

Schlüsselwörter

Keywords

Navigation