Skip to main content
Log in

Morphological and phylogenetical analysis reveals that a new tapeworm species (Cestoda: Hymenolepididae) from whooper swan belongs to Cloacotaenia not Hymenolepis

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

A Correction to this article was published on 06 October 2021

This article has been updated

Abstract

During a helminthological study of waterfowl in China, a new species (Cloacotaenia cygnimorbus sp. nov.) of hymenolepidid cestodes (tapeworm) was found in the small intestine of whooper swan (Cygnus cygnus, Linnaeus, 1758). The rudimentary rostellum and four unarmed muscular suckers, proglottids with distinct craspedote and three spherical testes were coincident with the characters of Cloacotaenia or Hymenolepis, but phylogenetic analysis of 28S rRNA and cox1 gene revealed that the new species is Cloacotaenia rather than Hymenolepis. Its morphology was also clearly differentiated from C. megalops in the arrangement of its testes in a triangle instead of in line and the cirrus unarmed rather than spined. Compared with C. megalops, the new species has more elongated neck, much larger mature proglottids and much smaller testes, cirrus sac, ovary, vitellarium and uterine proglottid. In addition, it infected the host intestine not the cloacae. Phylogenetic analysis of cox1 gene of the new species shows that it had a level of sequence variation (10.52–23.06%) with the sequences of C. megalops. The considerable morphological and molecular differences between those two parasites support C. cygnimorbus sp. nov. as a new species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

References

  • Blaxter ML, De LP, Garey JR, Liu LX, Scheldeman P, Vierstraete A, Vanfleteren JR, Mackey LY, Dorris M, Frisse LM, Vida JT, Thomas WK (1998) A molecular evolutionary framework for the phylum nematoda. Nature 392:71–75

    Article  CAS  PubMed  Google Scholar 

  • Blouin MS (2002) Molecular prospecting for cryptic species of nematodes: mitochondrial DNA versus internal transcribed spacer. Int J Parasitol 32:527–531

    Article  CAS  PubMed  Google Scholar 

  • Caira JN, Jensen K (2017) Planetary biodiversity inventory (2008–2017): tapeworms from vertebrate bowels of the earth. Natural History Museum, Lawrence

    Google Scholar 

  • Casanova JC, Santalla F, Durand P, Vaucher C, Feliu C, Renaud F (2001) Morphological and genetic differentiation of Rodentolepis straminea (Goeze, 1752) and Rodentolepis Microstoma (Dujardin, 1845) (Hymenolepididae). Parasitol Res 87:439–444

    Article  CAS  PubMed  Google Scholar 

  • Czaplinski B, Vaucher C (1994) Family hymenolepididae ariola, 1899. In: Khalil LF, Jones A, Bray RA (eds) Keys to the cestode parasites of vertebrates. Commonwealth Agricultural Bureaux International, Cambridge, pp 595–663

    Google Scholar 

  • Green AJ, Georgiev BB, Brochet AL, Gauthier-Clerc M, Fritz H, Guillemain M (2011) Determinants of the prevalence of the cloacal cestode Cloacotaenia megalops in teal wintering in the French Camargue. Eur J Wildl Res 57:275–281

    Article  Google Scholar 

  • Greiman SE, Tkach VV (2012) Description and phylogenetic relationships of Rodentolepis gnoskei n. sp. (Cyclophyllidea: Hymenolepididae) from a shrew Suncus varilla minor in Malawi. Parasitol Int 61:343–350

    Article  PubMed  Google Scholar 

  • Guo A (2016) Characterization of the complete mitochondrial genome of the cloacal tapeworm Cloacotaenia megalops (Cestoda: Hymenolepididae). Parasites Vectors 9:490

    Article  PubMed  PubMed Central  Google Scholar 

  • Haukisalmi V, Hardman LM, Foronda P, Feliu C, Laakkonen J, Niemimaa J, Lehtonen JT, Henttonen H (2010) Systematic relationships of Hymenolepidid cestodes of rodents and shrews inferred from sequences of 28S ribosomal RNA. Zool Scr 39:631–641

    Article  Google Scholar 

  • Haukos DA, Neaville J (2003) Spatial and temporal changes in prevalence of a cloacal cestode in wintering waterfowl along the Gulf Coast of Texas. J Wildl Dis 39:152–160

    Article  PubMed  Google Scholar 

  • Hu M, Chilton NB, Zhu X, Gasser RB (2002) Single-strand conformation polymorphism-based analysis of mitochondrial cytochrome c oxidase subunit 1 reveals significant substructuring in hookworm populations. Electrophoresis 23:27–34

    Article  PubMed  Google Scholar 

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makarikov AA, Mel'nikova YA, Tkach VV (2015) Description and phylogenetic affinities of two new species of Nomadolepis (Eucestoda, Hymenolepididae) from Eastern Palearctic. Parasitol Int 64:453–463

    Article  PubMed  Google Scholar 

  • Mariaux J (1998) A molecular phylogeny of the Eucestoda. J Parasitol 84:114–124

    Article  CAS  PubMed  Google Scholar 

  • Moszczynska A, Locke SA, McLaughlin JD, Marcogliese DJ, Crease TJ (2009) Development of primers for the mitochondrial cytochrome c oxidase i gene in digenetic trematodes (Platyhelminthes) illustrates the challenge of barcoding parasitic helminths. Mol Ecol Resour 9(Suppl s1):75–82

    Article  CAS  PubMed  Google Scholar 

  • Muniz-Pereira LC, Amato SB (1998) Fimbriaria fasciolaris and Cloacotaenia megalops (Eucestoda, Hymenolepididae), cestodes from Brazilian waterfowl. Mem Inst Oswaldo Cruz 93:767–772

    Article  CAS  PubMed  Google Scholar 

  • Nowak MR, Krolaczyk K, Kavetska KM, Pilarczyk B (2011) Morphological features of Cloacotaenia megalops (Nitzsch in Creplin, 1829) (Cestoda, Hymenolepididae) from different hosts. Wiad Parazytol 57:31–36

    PubMed  Google Scholar 

  • Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  Google Scholar 

  • Sharma S, Lyngdoh D, Roy B, Tandon V (2016) Differential diagnosis and molecular characterization of Hymenolepis nana and Hymenolepis diminuta (Cestoda: Cyclophyllidea: Hymenolepididae) based on nuclear rDNA ITS2 gene marker. Parasitol Res 115:4293–4298

    Article  PubMed  Google Scholar 

  • Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56:564–577

    Article  CAS  PubMed  Google Scholar 

  • Zehnder MP, Mariaux J (1999) Molecular systematic analysis of the order Proteocephalidea (Eucestoda) based on mitochondrial and nuclear rDNA sequences. Int J Parasitol 29:1841–1852

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks are especially due to Professor David Blair of the School of Marine and Tropical Biology, James Cook University, Professor Jean Mariaux, Natural History Museum in Geneva, Switzerland, and reviewers for assistance with the morphological description and language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijun Hou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project funding: This study was supported by National Natural Science Foundation of China (Grant Nos. 31601873 and 31970501), Fundamental Research Funds for the Central Universities (No. 2572018BE07), and Surveillance of Wildlife Diseases from the State Forestry Administration of China.

The online version is available at http://www.springerlink.com

Corresponding editor: Yanbo Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Z., Han, L., Sun, Y. et al. Morphological and phylogenetical analysis reveals that a new tapeworm species (Cestoda: Hymenolepididae) from whooper swan belongs to Cloacotaenia not Hymenolepis. J. For. Res. 31, 2581–2587 (2020). https://doi.org/10.1007/s11676-019-01036-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-019-01036-2

Keywords

Navigation