Advertisement

Experimental Investigation of Phase Equilibria in the Fe-Nb-Ta System

  • Bo Yang
  • Zeting Du
  • Cuiping Guo
  • Changrong Li
  • Zhenmin Du
Article
  • 29 Downloads

Abstract

The phase equilibria in the Fe-Nb-Ta ternary system at 1200, 1100 and 1000 °C were experimentally investigated. The microstructure of each sample was observed using scanning electron microscopy, and phase compositions were measured by energy dispersive spectrometry. The constituent phases of typical samples were analyzed with x-ray diffraction. The experimental results indicated that the continuous solid solution phases, Fe2(Nb,Ta) and Fe7(Nb,Ta)6, were formed between Fe2Nb and Fe2Ta and Fe7Nb6 and Fe7Ta6, respectively, and no ternary compounds were found in this system in these isothermal sections. Based on the experimental phase equilibria data obtained in the present work, three isothermal sections at 1200, 1100 and 1000 °C were constructed.

Keywords

Fe-Nb-Ta system isothermal section phase diagram phase equilibria 

Notes

Acknowledgment

The work was supported by the National Key R&D Program of China (Grant No. 2017YFB0703001) and the National Natural Science Foundation of China (NSFC) (Grant No. 51671025)

References

  1. 1.
    H. Tanigawa, H. Sakasegawa, N. Hashimoto, R.L. Klueh, M. Ando, and M.A. Sokolov, Irradiation Effects on Precipitation and Its Impact on the Mechanical Properties of Reduced-Activation Ferritic/Martensitic Steels, J. Nucl. Mater., 2007, 367, p 42-47ADSCrossRefGoogle Scholar
  2. 2.
    D.H. Wen, Q. Wang, B.B. Jiang, C. Zhang, X.N. Li, G.Q. Chen, R. Tang, R.Q. Zhang, C. Dong, and P.K. Liaw, Developing Fuel Cladding Fe-25Cr-22Ni Stainless Steels with High Microstructural Stabilities Via Mo/Nb/Ti/Ta/W Alloying, Mater. Sci. Eng. A, 2018, 719, p 27-42CrossRefGoogle Scholar
  3. 3.
    V. Kuzucua, M. Aksoyb, and M.H. Korkutc, The Effect of Strong Carbide-Forming Elements Such as Mo, Ti, V and Nb on the Microstructure of Ferritic Stainless Steel, J. Mater. Process. Technol., 1998, 82(1), p 165-171CrossRefGoogle Scholar
  4. 4.
    N. Terao and B. Cauwe, Influence of Additional Elements (Mo, Nb, Ta and B) on the Mechanical Properties of High-Manganese Dual-Phase Steels, J. Mater. Sci., 1988, 23(5), p 1769-1778ADSCrossRefGoogle Scholar
  5. 5.
    U.U. Gomes, J.F. Silva Jr., G.B.P. Ferreira, Effect of the Additives of Nanosized Nb and Ta Carbides on Microstructure and Properties of Sintered Stainless Steel, InTech, (2012), pp. 233–248Google Scholar
  6. 6.
    L. Falat, A. Schneider, G. Sauthoff, and G. Frommeyer, Mechanical Properties of Fe-Al-M-C (M = Ti, V, Nb, Ta) Alloys with Strengthening Carbides and Laves Phase, Intermetallics, 2005, 13(12), p 1256-1262CrossRefGoogle Scholar
  7. 7.
    V. Knezevic, G. Sauthoff, J. Vilk, G. Inden, A. Schneider, R. Agamennone, W. Blum, Y. Wang, A. Scholz, C. Berger, J. Ehlers, and L. Singheiser, Martensitic/Ferritic Super Heat-Resistant 650 °C Steels-Design and Testing of Model Alloys, ISIJ Int., 2002, 42(12), p 1505-1514CrossRefGoogle Scholar
  8. 8.
    Y. Yamamoto, M. Takeyama, Z.P. Lu, C.T. Liu, N.D. Evans, P.J. Maziasz, and M.P. Brady, Alloying Effects on Creep and Oxidation Resistance of Austenitic Stainless Steel Alloys Employing Intermetallic Precipitates, Intermetallics, 2008, 16(3), p 453-462CrossRefGoogle Scholar
  9. 9.
    Y. Xu, D. Yi, H. Liu, X. Wu, B. Wang, and F. Yang, Effects of Cold Deformation on Microstructure, Texture Evolution and Mechanical Properties of Ti-Nb-Ta-Zr-Fe Alloy for Biomedical Applications, Mater. Sci. Eng. A, 2012, 547, p 64-71CrossRefGoogle Scholar
  10. 10.
    Y. Xu, Y. Xiao, D. Yi, H. Liu, L. Wu, and J. Wen, Corrosion Behavior of Ti-Nb-Ta-Zr-Fe Alloy for Biomedical Applications in Ringer’s Solution, Trans. Nonferr. Met. Soc. China, 2015, 25(8), p 2556-2563CrossRefGoogle Scholar
  11. 11.
    I. Kopova, J. Strasky, P. Harcuba, M. Landa, M. Janecek, and L. Bacakova, Newly Developed Ti-Nb-Zr-Ta-Si-Fe Biomedical Beta Titanium Alloys with Increased Strength and Enhanced Biocompatibility, Mater. Sci. Eng. C, 2016, 60, p 230-238CrossRefGoogle Scholar
  12. 12.
    D.E. Williams and W.H. Pechin, The Tantalum-Columbium Alloy System, Trans. Am. Soc. Met., 1958, 50, p 1081-1089Google Scholar
  13. 13.
    E. Rudy, Compendium of Phase Diagram Data, AFML, Wright-Patterson AFB, Ohio, Rep. No. AFML-TR-65-2, Part 5 (1969)Google Scholar
  14. 14.
    K.C.H. Kumar, T.V. Rompaey, and P. Wollants, Thermodynamic Calculation of the Phase Diagram of the Co-Nb-Ta System, Z. Metallkd., 2002, 93(11), p 1146-1153CrossRefGoogle Scholar
  15. 15.
    W. Xiong, Y. Du, Y. Liu, B. Huang, H. Xu, H. Chen, and Z. Pan, Thermodynamic Assessment of the Mo-Nb-Ta System, CALPHAD, 2004, 28(2), p 133-140CrossRefGoogle Scholar
  16. 16.
    L.J. Swartzendruber and E. Paul, The Fe-Ta (Iron-Tantalum) System, Bull. Alloys Phase Diagr., 1986, 7(3), p 254-259CrossRefGoogle Scholar
  17. 17.
    T.B. Massalski, Binary Alloy Phase Diagrams, Vol 3, 2nd ed., T.B. Massalski, Ed., Materials Information Society, Materials Park, 1990Google Scholar
  18. 18.
    G.C. Coelho, J.G.C. Neto, S. Gama, and C.A. Ribeiro, Experimental Study of the Iron-Tantalum Equilibrium Diagram, J. Phase Equilib., 1995, 16(2), p 121-128CrossRefGoogle Scholar
  19. 19.
    S. Srikanth and A. Petric, Optimization and Calculation of the Fe-Ta Phase Diagram, J. Alloys Compd., 1994, 203, p 281-288CrossRefGoogle Scholar
  20. 20.
    A. Danon and C. Servant, Contribution to a Thermodynamic Database and Phase Equilibria Calculations for Low Activation Ta-Containing Steels, J. Nucl. Mater., 2003, 321(1), p 8-18ADSCrossRefGoogle Scholar
  21. 21.
    V.T. Witusiewicz, A.A. Bondar, U. Hecht, V.M. Voblikov, O.S. Fomichov, V.M. Petyukh, and S. Rex, Experimental Study and Thermodynamic Re-assessment of the Binary Fe-Ta System, Intermetallics, 2011, 19(7), p 1059-1075CrossRefGoogle Scholar
  22. 22.
    V.B. Rajkumar and K.C.H. Kumar, Gibbs Energy Modeling of Fe-Ta System by Calphad Method Assisted by Experiments and Ab Initio Calculations, CALPHAD, 2015, 48, p 157-165CrossRefGoogle Scholar
  23. 23.
    B. Zelaya, S. Gama, C.A. Ribeiro, and G. Effenberg, The Iron–Niobium Phase Diagram, Z. Metallkd., 1993, 84(3), p 160-164Google Scholar
  24. 24.
    M. Takeyama, N. Gomi, S. Morita, and T. Matsuo, Phase Equilibria and Lattice Parameters of Fe2Nb Laves Phase in Fe-Ni-Nb Ternary System at Elevated Temperatures, MRS Online Proc. Libr., 2005, 842, p 461-466Google Scholar
  25. 25.
    S. Voß, M. Palm, F. Stein, and D. Raabe, Phase Equilibria in the Fe-Nb System, J. Phase Equilib. Diffus., 2011, 32(2), p 97-104CrossRefGoogle Scholar
  26. 26.
    A. Jacob, C. Schmetterer, A. Khvan, A. Kondratiev, D. Lvanov, and B. Hallstedt, Liquidus Projection and Thermodynamic Modeling of the Cr-Fe-Nb Ternary System, CALPHAD, 2016, 54, p 1-15CrossRefGoogle Scholar
  27. 27.
    A. Raman, Tantalum-Iron System, Trans. Indian Inst. Met., 1966, 19, p 202-205Google Scholar
  28. 28.
    E.F. Abrahamson and S.L. Lopata, The Lattice Parameters and Solubility Limits of Alpha Iron as Affected by Some Binary Transition Element Additions, Trans. Metall. Soc. AIME, 1966, 236, p 76-87Google Scholar
  29. 29.
    A. Raman, Structural Study of Niobium-Iron Alloys, Proc. Indian Acad. Sci., 1967, 65(4), p 256-264Google Scholar
  30. 30.
    E. Paul and L.J. Swartzendruber, The Fe-Nb (Iron-Niobium) System, Bull. Alloys Phase Diagr., 1986, 7(3), p 248-254CrossRefGoogle Scholar
  31. 31.
    K.C.H. Kumar and V. Raghavan, Bcc-fcc Equilibrium in Ternary Iron Alloys-II, J. Alloys Phase Diagr., 1989, 5(3), p 201-220Google Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Bo Yang
    • 1
  • Zeting Du
    • 1
  • Cuiping Guo
    • 1
  • Changrong Li
    • 1
  • Zhenmin Du
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijingPeople’s Republic of China

Personalised recommendations