Skip to main content

Advertisement

Log in

Cold Spray Coating of Submicronic Ceramic Particles on Poly(vinyl alcohol) in Dry and Hydrogel States

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

An Erratum to this article was published on 06 April 2017

Abstract

We report an approach using cold spray technology to coat poly(vinyl alcohol) (PVA) in polymer and hydrogel states with hydroxyapatite (HA). Using porous aggregated HA powder, we hypothesized that fragmentation of the powder upon cold spray could lead to formation of a ceramic coating on the surface of the PVA substrate. However, direct spraying of this powder led to complete destruction of the swollen PVA hydrogel substrate. As an alternative, HA coatings were successfully produced by spraying onto dry PVA substrates prior to swelling in water. Dense homogeneous HA coatings composed of submicron particles were obtained using rather low-energy spraying parameters (temperature 200-250 °C, pressure 1-3 MPa). Coated PVA substrates could swell in water without removal of the ceramic layer to form HA-coated hydrogels. Microscopic observations and in situ measurements were used to explain how local heating and impact of sprayed aggregates induced surface roughening and strong binding of HA particles to the molten PVA substrate. Such an approach could lead to design of ceramic coatings whose roughness and crystallinity can be finely adjusted to improve interfacing with biological tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M.I. Baker, S.P. Walsh, Z. Schwartz, and B.D. Boyan, A Review of Polyvinyl alcohol and Its Uses in Cartilage and Orthopedic Applications, J. Biomed. Mater. Res. B Appl. Biomater., 2012, 100B(5), p 1451-1457

    Article  Google Scholar 

  2. A. Packter and M. Nerurkar, Crystallization in Films of Polar Vinyl Polymers-I. Crystallinity of Polyvinyl alcohol Films Prepared by Evaporation of Aqueous Solutions, Eur. Polym. J., 1968, 4(6), p 685-693

    Article  Google Scholar 

  3. E. Otsuka and A. Suzuki, A Simple Method to Obtain a Swollen PVA Gel Crosslinked by Hydrogen Bonds, J. Appl. Polym. Sci., 2009, 114(1), p 10-16

    Article  Google Scholar 

  4. N.A. Peppas, J.Z. Hilt, A. Khademhosseini, and R. Langer, Hydrogels in Biology and Medicine: From Molecular Principles to Bionanotechnology, Adv. Mater., 2006, 18(11), p 1345-1360

    Article  Google Scholar 

  5. T. Noguchi, T. Yamamuro, M. Oka, P. Kumar, Y. Kotoura, S. Hyon, and Y. Ikada, Poly(vinyl alcohol) Hydrogel as an Artificial Articular Cartilage: Evaluation of Biocompatibility, J. Appl. Biomater., 1991, 2(2), p 101-107

    Article  Google Scholar 

  6. M.J. Allen, J.E. Schoonmaker, T.W. Bauer, P.F. Williams, P.A. Higham, and H.A. Yuan, Preclinical Evaluation of a Poly(vinyl alcohol) Hydrogel Implant as a Replacement for the Nucleus Pulposus, Spine, 2004, 29(5), p 515-523

    Article  Google Scholar 

  7. F.V. Sciarretta, 5 to 8 Years Follow-up of Knee Chondral Defects Treated by PVA-H Hydrogel Implants, Eur. Rev. Med. Pharmacol. Sci., 2013, 17, p 3031-3038

    Google Scholar 

  8. M. Kobayashi, Y.-S. Chang, and M. Oka, A Two Year in Vivo Study of Polyvinyl alcohol-Hydrogel (PVA-H) Artificial Meniscus, Biomaterials, 2005, 26(16), p 3243-3248

    Article  Google Scholar 

  9. J.S. Bach, F. Detrez, M. Cherkaoui, S. Cantournet, D.N. Ku, and L. Corté, Hydrogel Fibers for ACL Prosthesis: Design and Mechanical Evaluation of PVA and PVA/UHMWPE Fiber Constructs, J. Biomech., 2013, 46(8), p 1463-1470

    Article  Google Scholar 

  10. D. Darwis, P. Stasica, M.T. Razzak, and J.M. Rosiak, Characterization of Poly(vinyl alcohol) Hydrogel for Prosthetic Intervertebral Disc Nucleus, Radiat. Phys. Chem., 2002, 63(3-6), p 539-542

    Article  Google Scholar 

  11. R. Hou, G. Zhang, G. Du, D. Zhan, Y. Cong, Y. Cheng, and J. Fu, Magnetic Nanohydroxyapatite/PVA Composite Hydrogels for Promoted Osteoblast Adhesion and Proliferation, Colloids Surf. B Biointerfaces, 2013, 103, p 318-325

    Article  Google Scholar 

  12. K. Matsumura, T. Hayami, S.-H. Hyon, and S. Tsutsumi, Control of Proliferation and Differentiation of Osteoblasts on Apatite-Coated Poly(vinyl alcohol) Hydrogel as an Artificial Articular Cartilage Material, J. Biomed. Mater. Res. A, 2010, 92A(1), p 1225-1232

    Google Scholar 

  13. S.A. Maher, S.B. Doty, P.A. Torzilli, S. Thornton, A.M. Lowman, J.D. Thomas, R. Warren, T.M. Wright, and E. Myers, Nondegradable Hydrogels for the Treatment of Focal Cartilage Defects, J. Biomed. Mater. Res. A, 2007, 83A(1), p 145-155

    Article  Google Scholar 

  14. L.L. Hench, Bioceramics: From Concept to Clinic, J. Am. Ceram. Soc., 1991, 74(7), p 1487-1510

    Article  Google Scholar 

  15. B. Chuenjitkuntaworn, W. Inrung, D. Damrongsri, K. Mekaapiruk, P. Supaphol, and P. Pavasant, Polycaprolactone/Hydroxyapatite Composite Scaffolds: Preparation, Characterization, and in Vitro and in Vivo Biological Responses of Human Primary Bone Cells, J. Biomed. Mater. Res. A, 2010, 94A(1), p 241-251

    Article  Google Scholar 

  16. A.S. Asran, S. Henning, and G.H. Michler, Polyvinyl alcohol-Collagen-Hydroxyapatite Biocomposite Nanofibrous Scaffold: Mimicking the Key Features of Natural Bone at the Nanoscale Level, Polymer, 2010, 51(4), p 868-876

    Article  Google Scholar 

  17. D. Moreau, A. Villain, D.N. Ku, and L. Corté, Poly(vinyl alcohol) Hydrogel Coatings with Tunable Surface Exposure of Hydroxyapatite, Biomatter, 2014, 4(1), p e28764

    Article  Google Scholar 

  18. A. Bajpai and R. Singh, Study of Biomineralization of Poly(vinyl alcohol)-Based Scaffolds Using an Alternate Soaking Approach, Polym. Int., 2007, 56(4), p 557-568

    Article  Google Scholar 

  19. J.S. Gonzalez, A.S. Maiolo, C.E. Hoppe, and V.A. Alvarez, Composite Gels Based on Poly(vinyl alcohol) for Biomedical Uses, Procedia Mater. Sci., 2012, 1, p 483-490

    Article  Google Scholar 

  20. T. Hayami, K. Matsumura, M. Kusunoki, H. Nishikawa, and S. Hontsu, Imparting Cell Adhesion to Poly(vinyl alcohol) Hydrogel by Coating with Hydroxyapatite Thin Film, Mater. Lett., 2007, 61(13), p 2667-2670

    Article  Google Scholar 

  21. V.I. Lozinsky, L.V. Domotenko, E.S. Vainerman, A.M. Mamtsis, and S.V. Rogozhin, On the Possibility of Mechanodestruction of Poly(vinyl alcohol) Molecules Under Moderate Freezing of Its Concentrated Water Solutions, Polym. Bull., 1986, 15(4), p 333-340

    Article  Google Scholar 

  22. L. Sun, C.C. Berndt, K.A. Gross, and A. Kucuk, Material Fundamentals and Clinical Performance of Plasma-Sprayed Hydroxyapatite Coatings: A Review, J. Biomed. Mater. Res., 2001, 58(5), p 570-592

    Article  Google Scholar 

  23. P.S. Prevéy, X-Ray Diffraction Characterization of Crystallinity and Phase Composition in Plasma-Sprayed Hydroxyapatite Coatings, J. Therm. Spray Technol., 2000, 9(3), p 369-376

    Article  Google Scholar 

  24. J. Villafuerte, Modern Cold Spray, Springer International Publishing, Switzerland, 2015

  25. A. Papyrin, Cold Spray Technology, Adv. Mater. Process., 2001, 159(9), p 49-51

    Google Scholar 

  26. A. Moridi, S.M. Hassani-Gangaraj, M. Guagliano, and M. Dao, Cold Spray Coating: Review of Material Systems and Future Perspectives, Surf. Eng., 2014, 30(6), p 369-395

    Article  Google Scholar 

  27. J.H. Lee, H.L. Jang, K.M. Lee, H.-R. Baek, K. Jin, K.S. Hong, J.H. Noh, and H.-K. Lee, In Vitro and in Vivo Evaluation of the Bioactivity of Hydroxyapatite-Coated Polyetheretherketone Biocomposites Created by Cold Spray Technology, Acta Biomater., 2013, 9(4), p 6177-6187

    Article  Google Scholar 

  28. N. Sanpo, M.L. Tan, P. Cheang, and K.A. Khor, Antibacterial Property of Cold-Sprayed HA-Ag/PEEK Coating, J. Therm. Spray Technol., 2009, 18(1), p 10-15

    Article  Google Scholar 

  29. T. Nishino, K. Tada, and K. Nakamae, Elastic Modulus of Crystalline Regions of Poly(ether Ether ketone), Poly(ether ketone) and Poly(p-phenylene sulphide), Polymer, 1992, 33(4), p 736-743

    Article  Google Scholar 

  30. P.C. King, A.J. Poole, S. Horne, R. de Nys, S. Gulizia, and M.Z. Jahedi, Embedment of Copper Particles into Polymers by Cold Spray, Surf. Coat. Technol., 2013, 216, p 60-67

    Article  Google Scholar 

  31. I. Burlacov, J. Jirkovský, L. Kavan, R. Ballhorn, and R.B. Heimann, Cold Gas Dynamic Spraying (CGDS) of TiO2 (Anatase) Powders onto Poly(sulfone) Substrates: Microstructural Characterisation and Photocatalytic Efficiency, J. Photochem. Photobiol. Chem., 2007, 187(2-3), p 285-292

    Article  Google Scholar 

  32. R.K. Tubbs, Melting Point and Heat of Fusion of Poly(vinyl alcohol), J. Polym. Sci. Part A, 1965, 3, p 4181-4189

    Google Scholar 

  33. N.A. Peppas and E.W. Merrill, Differential Scanning Calorimetry of Crystallized PVA Hydrogels, J. Appl. Polym. Sci., 1976, 20(6), p 1457-1465

    Article  Google Scholar 

  34. H.Y. Lee, Y.H. Yu, Y.C. Lee, Y.P. Hong, and K.H. Ko, Thin Film Coatings of WO3 by Cold Gas Dynamic Spray: A Technical Note, J. Therm. Spray Technol., 2005, 14(2), p 183-186

    Article  Google Scholar 

  35. M. Yamada, H. Isago, H. Nakano, and M. Fukumoto, Cold Spraying of TiO2 Photocatalyst Coating With Nitrogen Process Gas, J. Therm. Spray Technol., 2010, 19(6), p 1218-1223

    Article  Google Scholar 

  36. M. Yamada, Y. Kandori, K. Sato, and M. Fukumoto, Fabrication of Titanium Dioxide Photocatalyst Coatings by Cold Spray, J. Solid Mech. Mater. Eng., 2009, 3(2), p 210-216

    Article  Google Scholar 

  37. K. Haraguchi and T. Takehisa, Nanocomposite Hydrogels: A Unique Organic-Inorganic Network Structure with Extraordinary Mechanical, Optical, and Swelling/De-swelling Properties, Adv. Mater., 2002, 14(16), p 1120

    Article  Google Scholar 

  38. S. Rose, A. Prevoteau, P. Elzière, D. Hourdet, A. Marcellan, and L. Leibler, Nanoparticle Solutions as Adhesives for Gels and Biological Tissues, Nature, 2013, 505(7483), p 382-385

    Article  Google Scholar 

  39. D. Moreau, L. Corté, F. Borit, and V. Guipont, Cold Spray of Agglomerated Submicronic Hydroxyapatite Powders for Biomedical Applications, Proc. ITSC 2016 Int. Therm. Spray Conf. Expo. May 10-12 2016, 2016, p 6-11

  40. J.R. Jones, Review of Bioactive Glass: From Hench to Hybrids, Acta Biomater., 2013, 9(1), p 4457-4486

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank M. Betbeder and F. Gaslain for their help with SEM and J.-D. Bartout for granulometry measurements. D.M. acknowledges a Ph.D. scholarship from Mines ParisTech. Financial support from Mines ParisTech, ESPCI Paris, and Institut Carnot M.I.N.E.S. (Grant HAP-Process 2012) is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Corté.

Additional information

The original version of this article was revised: We regret that the original article contained a spelling error in the title. The title should have been published to read: Cold Spray Coating of Submicronic Ceramic Particles on Poly(vinyl alcohol) in Dry and Hydrogel States.

An erratum to this article is available at http://dx.doi.org/10.1007/s11666-017-0556-3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreau, D., Borit, F., Corté, L. et al. Cold Spray Coating of Submicronic Ceramic Particles on Poly(vinyl alcohol) in Dry and Hydrogel States. J Therm Spray Tech 26, 958–969 (2017). https://doi.org/10.1007/s11666-017-0551-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-017-0551-8

Keywords

Navigation