Skip to main content
Log in

Investigation on Tribological Behavior of Hot-Pressed Steel/TiB2 Composites Using Taguchi Experimental Design

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This article presents the dry sliding wear response of steel composites reinforced with TiB2 particles prepared by hot consolidation. Taguchi’s L27 orthogonal array design is adopted to investigate the effect of four operating parameters, i.e., normal load, sliding speed, sliding distance, and reinforcement content on the wear rate of the resultant composite. Reinforcement content is observed to be the most significant factor that affects the wear mechanism followed by sliding velocity and normal load. Specific wear rate revealed a decreasing trend with an increase in sliding speed and load. Wear mechanisms were discussed by analyzing the worn surfaces using a scanning electron microscope. The presence of hard TiB2 particles resulted in enhancement of resistance to plastic deformation of the steel matrix by preventing plastic plowing and cutting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. G. Mahajan, N. Karve, U. Patil, P. Kuppan and K. Venkatesan, Analysis of Microstructure, Hardness and Wear of Al-SiC-TiB2 Hybrid Metal Matrix Composite, Indian J. Sci. Technol., 2015, 8(January), p 1–6.

    Google Scholar 

  2. V. Umasankar, Experimental Evaluation of the Influence of Processing Parameters on the Mechanical Properties of SiC Particle Reinforced AA6061 Aluminium Alloy Matrix Composite by Powder Processing, J. Alloys Compd., 2014, 582, p 380–386.

    Article  CAS  Google Scholar 

  3. S.Z. Abbas, Fe – TiB 2 Composites Produced through Casting Technique, Mater. Sci. Technol., 2020, 36(3), p 299–306.

    Article  CAS  Google Scholar 

  4. W. Gao, Y. Zhou, X. Han, S. Li and Z. Huang, Preparation and Microstructure of 3D Framework TiC – TiB 2 Ceramics and Their Reinforced Steel Matrix Composites, Ceram. Int., 2021, 47(2), p 2329–2337. https://doi.org/10.1016/j.ceramint.2020.09.075

    Article  CAS  Google Scholar 

  5. M. Sadhasivam, S.R. Sankaranarayanan and S.P.K. Babu, ScienceDirect Synthesis and Characterization of TiB 2 Reinforced AISI 420 Stainless Steel Composite through Vacuum Induction Melting Technique, Mater. Today Proc., 2020, 22, p 2550–2558. https://doi.org/10.1016/j.matpr.2020.03.385

    Article  CAS  Google Scholar 

  6. F. Qiu, H. Zhang, C.L. Li, Z.F. Wang, F. Chang, H.Y. Yang, C. De Li, X. Han and Q.C. Jiang, Simultaneously Enhanced Strength and Toughness of Cast Medium Carbon Steels Matrix Composites by Trace Nano-Sized TiC Particles, Mater. Sci. Eng. A, 2021, 819, p 141485. https://doi.org/10.1016/j.msea.2021.141485

    Article  CAS  Google Scholar 

  7. B. Almangour, D. Grzesiak and J.M. Yang, Rapid Fabrication of Bulk-Form TiB2/316L Stainless Steel Nanocomposites with Novel Reinforcement Architecture and Improved Performance by Selective Laser Melting, J. Alloys Compd., 2016, 680, p 480–493.

    Article  CAS  Google Scholar 

  8. I. Sulima, P. Putyra, P. Hyjek and T. Tokarski, Effect of SPS Parameters on Densification and Properties of Steel Matrix Composites, Adv. Powder Technol., 2015, 26(4), p 1152–1161.

    Article  CAS  Google Scholar 

  9. I. Sulima, P. Klimczyk and P. Malczewski, Effect of TiB2particles on the Tribological Properties of Stainless Steel Matrix Composites, Acta Metall. Sin. English Lett., 2014, 27(1), p 12–18.

    Article  CAS  Google Scholar 

  10. A. Farid, S. Guo, X. Yang and Y. Lian, Stainless Steel Binder for the Development of Novel TiC-Reinforced Steel Cermets, J. Univ. Sci. Technol. Beijing Miner. Metall. Mater., 2006, 13(6), p 546–550.

    Google Scholar 

  11. F. Akhtar and S.J. Guo, Microstructure, Mechanical and Fretting Wear Properties of TiC-Stainless Steel Composites, Mater. Charact., 2008, 59(1), p 84–90.

    Article  CAS  Google Scholar 

  12. E. Pagounis and V.K. Lindroos, Processing and Properties of Particulate Reinforced Steel Matrix Composites, Mater. Sci. Eng. A, 1998, 246(1–2), p 221–234.

    Article  Google Scholar 

  13. I. Sulima, Tribological Properties of Steel/TiB2 Composites Prepared by Spark Plasma Sintering, Arch. Metall. Mater., 2014, 59(4), p 1263–1268.

    Article  CAS  Google Scholar 

  14. S.C. Tjong and K.C. Lau, Sliding Wear of Stainless Steel Matrix Composite Reinforced with TiB2 Particles, Mater. Lett., 1999, 41(4), p 153–158.

    Article  CAS  Google Scholar 

  15. S.C. Tjong and K.C. Lau, Abrasion Resistance of Stainless-Steel Composites Reinforced with Hard TiB2 Particles, Compos. Sci. Technol., 2000, 60(8), p 1141–1146.

    Article  CAS  Google Scholar 

  16. Y.P. Song, H. Yu, J.G. He and H.G. Wang, Elevated Temperature Sliding Wear Behavior of WCP-Reinforced Ferrous Matrix Composites, J. Mater. Sci., 2008, 43(22), p 7115–7120.

    Article  CAS  Google Scholar 

  17. C.C. Degnan, P.H. Shipway and J.V. Wood, Elevated Temperature Sliding Wear Behaviour of TiC-Reinforced Steel Matrix Composites, Wear, 2001, 251(1–12), p 1444–1451.

    Article  Google Scholar 

  18. X. Deng, L. Huang, Q. Wang, T. Fu and Z. Wang, Three-Body Abrasion Wear Resistance of TiC-Reinforced Low-Alloy Abrasion-Resistant Martensitic Steel under Dry and Wet Sand Conditions, Wear, 2019, 2020(452–453), p 203310. https://doi.org/10.1016/j.wear.2020.203310

    Article  CAS  Google Scholar 

  19. J. Singh and A. Chauhan, Overview of Wear Performance of Aluminium Matrix Composites Reinforced with Ceramic Materials under the Influence of Controllable Variables, Ceram. Int., 2016, 42(1), p 56–81. https://doi.org/10.1016/j.ceramint.2015.08.150

    Article  CAS  Google Scholar 

  20. T.R. Hemanth Kumar, R.P. Swamy and T.K. Chandrashekar, An Experimental Investigation on Wear Test Parameters of Metal Matrix Composites Using Taguchi Technique, Indian J. Eng. Mater. Sci., 2013, 20(4), p 329–333.

    Google Scholar 

  21. P. Chatsirirungruang, Application of Genetic Algorithm and Taguchi Method in Dynamic Robust Parameter Design for Unknown Problems, Int. J. Adv. Manuf. Technol., 2010, 47(9–12), p 993–1002.

    Article  Google Scholar 

  22. N.C. Fei, N.M. Mehat and S. Kamaruddin, Practical Applications of Taguchi Method for Optimization of Processing Parameters for Plastic Injection Moulding: A Retrospective Review, ISRN Ind. Eng., 2013, 2013, p 1–11.

    Google Scholar 

  23. M. Yazdani, A. Daryabari, A. Farshi and S. Talatahari, Application of Taguchi Method and Genetic Algorithm for Calibration of Soil Constitutive Models, J. Appl. Math., 2013, 2013, p 1–13.

    Google Scholar 

  24. S. Dharmalingam, R. Subramanian, K. Somasundara Vinoth and B. Anandavel, Optimization of Tribological Properties in Aluminum Hybrid Metal Matrix Composites Using Gray-Taguchi Method, J. Mater. Eng. Perform., 2011, 20(8), p 1457–1466.

    Article  CAS  Google Scholar 

  25. S. Baskaran, V. Anandakrishnan and M. Duraiselvam, Investigations on Dry Sliding Wear Behavior of in Situ Casted AA7075–TiC Metal Matrix Composites by Using Taguchi Technique, Mater. Des., 2014, 60, p 184–192.

    Article  CAS  Google Scholar 

  26. B.M. Girish, B.M. Satish, S. Sarapure and A. Basawaraj, Optimization of Wear Behavior of Magnesium Alloy AZ91 Hybrid Composites Using Taguchi Experimental Design, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2016, 47(6), p 3193–3200.

    Article  CAS  Google Scholar 

  27. S. Koksal, F. Ficici, R. Kayikci and O. Savas, Experimental Optimization of Dry Sliding Wear Behavior of in Situ AlB2/Al Composite Based on Taguchi’s Method, Mater. Des., 2012, 42, p 124–130.

    Article  CAS  Google Scholar 

  28. S. Sahoo, B.B. Jha, T.K. Sahoo and A. Mandal, Influence of Reinforcement and Processing on Steel-Based Composites: Microstructure and Mechanical Response, Mater. Manuf. Process., 2018, 33(5), p 564–571. https://doi.org/10.1080/10426914.2017.1364865

    Article  CAS  Google Scholar 

  29. X. Zhou, M. Wang and H. Zhao, Microstructure Characteristics of High Borated Stainless Steel Fabricated by Hot-Pressing Sintering, J. Alloys Compd., 2016, 665, p 100–106.

    Article  CAS  Google Scholar 

  30. B. Dutta and F.H. Froes, Microstructure and Mechanical Properties, Addit. Manuf. Titan. Alloy., 2016, 46(2), p 41–50.

    Google Scholar 

  31. O. Olaniran, B.O. Adewuyi, J.A. Omotoyinbo, A.E. Afolabi, D. Folorunso, A. Adegbola and E. Igbafen, Development of Oxide Dispersion Strengthened 2205 Duplex Stainless Steel Composite, Leonardo Electron. J. Pract. Technol., 2015, 14(26), p 129–140.

    Google Scholar 

  32. T. Madhusudhan and M. Senthil Kumar, Experimental Study on Wear Behaviour of SiC Filled Hybrid Composites Using Taguchi Method, Int. J. Mech. Eng. Technol., 2017, 8(2), p 271–277.

    Google Scholar 

  33. S. Spuzic, M. Zec, K. Abhary, R. Ghomashchi and I. Reid, Fractional Design of Experiments Applied to a Wear Simulation, Wear, Elsevier, 1997, 212(1), p 131–139.

    Article  CAS  Google Scholar 

  34. S.D. Bolboacă and L. Jäntschi, Design of Experiments: Useful Orthogonal Arrays for Number of Experiments from 4 to 16, Entropy, 2007, 9(4), p 198–232.

    Article  Google Scholar 

  35. M. Kowalczyk, Application of Taguchi and Anova Methods in Selection of Process Parameters for Surface Roughness in Precision Turning of Titanium, Adv. Manuf. Sci. Technol., 2014, 38(2), p 21–35.

    Google Scholar 

  36. N. Logothetis and A. Haigh, Characterizing and Optimizing Multi-response Processes by the Taguchi Method, Qual. Reliab. Eng. Int., 1988, 4(2), p 159–169.

    Article  Google Scholar 

  37. S. Sahoo, B.B. Jha, T.S. Mahata, J. Sharma, T.S.R.C. Murthy and A. Mandal, Impression Creep Behaviour of TiB2 Particles Reinforced Steel Matrix Composites, Mater. Sci. Technol. (United Kingdom), 2018, 34(16), p 1965–1975. https://doi.org/10.1080/02670836.2018.1497130

    Article  CAS  Google Scholar 

  38. M. Akbari, M.H. Shojaeefard, P. Asadi and A. Khalkhali, Wear Performance of A356 Matrix Composites Reinforced with Different Types of Reinforcing Particles, J. Mater. Eng. Perform, 2017, 26(9), p 4297–4310.

    Article  CAS  Google Scholar 

  39. B.N. Mordyuk, G.I. Prokopenko, Y.V. Milman, M.O. Iefimov, K.E. Grinkevych, A.V. Sameljuk and I.V. Tkachenko, Wear Assessment of Composite Surface Layers in Al–6Mg Alloy Reinforced with AlCuFe Quasicrystalline Particles: Effects of Particle Size, Microstruct. Hardness Wear, 2014, 319(1–2), p 84–95.

    CAS  Google Scholar 

  40. S. Poria, P. Sahoo and G. Sutradhar, Tribological Characterization of Stir-Cast Aluminium-TiB2 Metal Matrix Composites, Silicon, Silicon, 2016, 8(4), p 591–599. https://doi.org/10.1007/s12633-016-9437-5

    Article  CAS  Google Scholar 

  41. M.M.H. Bastwros, A.M.K. Esawi and A. Wifi, Friction and Wear Behavior of Al–CNT Composites, Wear, 2013, 307(1–2), p 164–173.

    Article  CAS  Google Scholar 

  42. J.F. Archard and W. Hirst, The Wear of Metals under Unlubricated Conditions, Proc. R. Soc. London. Ser. A. Math. Phys. Sci., 1956, 236(1206), p 397–410.

    Google Scholar 

  43. A.R. Goswami, S. Sardar, and S.K. Karmakar, Temperature Rise and Wear of Sliding Contact of Alloy Steels, AIP Conf. Proc., 2016, 1754.

  44. P. Palanikumar, N. Gnanasekaran, K. Subrahmanya and V. Kaliveeran, Effect of Sliding Speed and Rise in Temperature at the Contact Interface on Coefficient of Friction during Full Sliding of SS304, Mater. Today Proc., 2020, 2020(27), p 1996–1999. https://doi.org/10.1016/j.matpr.2019.09.046

    Article  CAS  Google Scholar 

  45. H. Kaftelen, N. Ünlü, G. Göller, M. Lütfi Öveolu and H. Henein, Comparative Processing-Structure–Property Studies of Al–Cu Matrix Composites Reinforced with TiC Particulates, Compos. Part A Appl. Sci. Manuf., 2011, 42(7), p 812–824.

    Article  Google Scholar 

  46. F. Velasco, W.M. Lima, N. Antón, J. Abenójar and J.M. Torralba, Effect of Intermetallic Particles on Wear Behaviour of Stainless Steel Matrix Composites, Tribol. Int., 2003, 36(7), p 547–551.

    Article  CAS  Google Scholar 

  47. P. Ravindran, K. Manisekar, R. Narayanasamy and P. Narayanasamy, Tribological Behaviour of Powder Metallurgy-Processed Aluminium Hybrid Composites with the Addition of Graphite Solid Lubricant, Ceram. Int., 2013, 39(2), p 1169–1182.

    Article  CAS  Google Scholar 

  48. S. Sahoo, B.B. Jha, T. Mahata, J. Sharma, T.S.R.C. Murthy and A. Mandal, Mechanical and Wear Behaviour of Hot-Pressed 304 Stainless Steel Matrix Composites Containing TiB 2 Particles, Trans. Indian Inst. Met., 2019, 72(5), p 1153–1165. https://doi.org/10.1007/s12666-019-01588-1

    Article  CAS  Google Scholar 

  49. R. Gecu, H. Atapek and A. Karaaslan, Influence of Preform Preheating on Dry Sliding Wear Behavior of 304 Stainless Steel Reinforced A356 Aluminum Matrix Composite Produced by Melt Infiltration Casting, Tribol. Int., 2017, 115, p 608–618.

    Article  CAS  Google Scholar 

  50. M.X. Wei, K.M. Chen, S.Q. Wang and X.H. Cui, Analysis for Wear Behaviors of Oxidative Wear, Tribol. Lett., 2011, 42(1), p 1–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are grateful to the Director, CSIR-IMMT, Bhubaneswar for supporting and allowing to publish this research work.

Funding

This work was supported by the Board of Research in Nuclear Science (BRNS) of the Department of Atomic Energy (DAE), Government of India under grant no. 36(2)/14/18/2016- BRNS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandip Kumar Nayak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, S., Jha, B.B., Mantry, S. et al. Investigation on Tribological Behavior of Hot-Pressed Steel/TiB2 Composites Using Taguchi Experimental Design. J. of Materi Eng and Perform 31, 2121–2135 (2022). https://doi.org/10.1007/s11665-021-06372-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06372-1

Keywords

Navigation