Skip to main content
Log in

Copper Corrosion Under Non-uniform Magnetic Field in 0.5 M Hydrochloric Acid

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The influence of a magnetic field on the electrochemical reactions taking place at the surface of a copper electrode immersed in a 0.5 M HCl solution at room temperature has been studied. The symmetry axis of the magnetic field was lined up in the same direction of the ion flow to minimize the Lorentz forces. Measurements of potentiodynamic polarization curves, electrochemical impedance spectroscopy and electrochemical noise allow concluding that the magnetic field significantly affects the cathodic reactions, with corrosion rates increasing under the presence of oxygen in acid media and decreasing when oxygen is eliminated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G. Hinds, J.M. Coey, and M.E.G. Lyons, Influence of Magnetic Forces on Electrochemical Mass Transport, Electrochem. Commun., 2001, 3, p 215–218

    Article  Google Scholar 

  2. T.Z. Fahidy, Magnetoelectrolysis, J. Appl. Electrochem., 1983, 13, p 553–563

    Article  Google Scholar 

  3. R.A. Tacken and L.J. Janssen, Applications of Magnetroelectrolysis, J. Appl. Electrochem., 1995, 25, p 1–5

    Article  Google Scholar 

  4. O. Aaboubi, J.P. Chopart, J. Douglade, A. Olivier, C. Gabrielli, and B. Tribollet, Magnetic Field Effects on Mass Transport, J. Electrochem. Soc., 1990, 137(6), p 1796–1804

    Article  Google Scholar 

  5. J. Hu, C. Dong, X. Li, and K. Xiao, Effects of Applied Magnetic Field on Corrosion of Beryllium Copper in NaCl Solution, J. Mater. Sci. Technol., 2010, 26(4), p 355–361

    Article  Google Scholar 

  6. D.T. Kountouras, C.A. Vogiatzis, A. Tsouknidas, and S. Skolianos, Preventing or Accelerating Galvanic Corrosion Through the Application of a Proper External Magnetic Field, Corros. Eng. Sci. Technol., 2014, 49(7), p 603–607

    Article  Google Scholar 

  7. O. Devos, O. Aaboubi, J.-P. Chopart, A. Olivier, C. Gabrielli, and B. Tribollet, Is There Magnetic Field Effect on Electrochemical Kinetics?, J. Phys. Chem. A, 2000, 104, p 1544–1548

    Article  Google Scholar 

  8. C.-C. Lee and T.-C. Chou, Effects of Magnetic Field on the Reaction Kinetics of Electroless Nickel Deposition, Electrochim. Acta, 1995, 40, p 965–970

    Article  Google Scholar 

  9. J.C. Shannon, Z.H. Gu, and T.Z. Fahidy, Surface Morphology of Cathodic Nickel Deposits Produced via Magnetoelectrolysis, J. Electrochem. Soc., 1997, 144, p L314–L316

    Article  Google Scholar 

  10. I. Mogi and M. Kamiko, Striking Effects of Magnetic Field on the Growth Morphology of Electrochemical Deposits, J. Cryst. Growth, 1996, 166, p 276–280

    Article  Google Scholar 

  11. O. Devos, A. Olivier, J.-P. Chopart, O. Aaboubi, and G. Maurin, Magnetic Field Effects on Nickel Electrodeposition, J. Electrochem. Soc., 1998, 145, p 401–405

    Article  Google Scholar 

  12. W.D. Bjorndahl and K. Nobe, Copper Corrosion in Chloride Media, Effect of Oxygen, Corrosion, 1984, 40, p 82–87

    Article  Google Scholar 

  13. G. Kear, B.D. Barker, and F.C. Walsh, Electrochemical Corrosion of Unalloyed Copper in Chloride Media—A Critical Review, Corros. Sci., 2004, 46, p 109–135

    Article  Google Scholar 

  14. F.K. Crundwell, The Anodic Dissolution of Copper in Hydrochloric Acid Solutions, Electrochim. Acta, 1992, 37, p 2707–2714

    Article  Google Scholar 

  15. E.J. Kelly, Magnetic Field Effects on Electrochemical Reactions Occurring at Metal/Flowing-Electrolyte Interfaces, J. Electrochem. Soc., 1977, 124, p 987–994

    Article  Google Scholar 

  16. Z. Lu, C. Huang, D. Huang, and W. Yang, Effects of a Magnetic Field on the Anodic Dissolution, Passivation and Transpassivation Behaviour of Iron in Weakly Alkaline Solutions with or without Halides, Corros. Sci., 2006, 48, p 3049–3077

    Article  Google Scholar 

  17. G. Hinds, J.M.D. Coey, and M.E.G. Lyons, Influence of Magnetic Forces on Electrochemical Mass Transport, Electrochem. Commun., 2001, 3, p 215–218

    Article  Google Scholar 

  18. A. Ručinskienė, G. Bikučius, L. Gudavičiūtė, and E. Juzeliūnas, Magnetic Field Effect on Stainless Steel Corrosion in FeCl3 Solution, Electrochem. Commun., 2002, 4, p 86–91

    Article  Google Scholar 

  19. A. Chiba, K. Kawazu, O. Nakano, T. Tamura, S. Yoshihara, and E. Sato, The Effects of Magnetic Fields on the Corrosion of Aluminum Foil in Sodium Chloride Solutions, Corros. Sci., 1994, 36, p 539–543

    Article  Google Scholar 

  20. P. Eckmann, S.O. Kamphost, and D. Ruelle, Recurrence Plot of Dynamical Systems, Europhys. Lett., 1987, 4, p 973–977

    Article  Google Scholar 

  21. J.P. Zbilut and C.L. Webber, Embedding and Delays as Derived from Quantification of Recurrence Plot, Phys. Lett. A, 1992, 171, p 199–203

    Article  Google Scholar 

  22. G. McGuire, N.B. Azar, and M. Shelhamer, Recurrence Matrices and the Preservation of Dynamical Properties, Phys. Lett. A, 1997, 237, p 43–47

    Article  Google Scholar 

  23. G. McGuire, N.B. Azar, and M. Shelhamer, Recurrence Matrices and the Preservation of Dynamical Properties, Phys. Lett. A, 1997, 237, p 43–47

    Article  Google Scholar 

  24. C.L. Webber, Jr., and J.P. Zbilut, Dynamical Assessment of Physiological Systems and States Using Recurrence Plot Strategies, J. Appl. Physiol., 1994, 76, p 965–973

    Google Scholar 

  25. L.L. Trulla, A. Giuliani, J.P. Zbilut, and C.L. Webber, Jr., Recurrence Quantification Analysis of the Logistic Equation with Transients, Phys. Lett. A, 1996, 223, p 255–260

    Article  Google Scholar 

  26. C. Morana, S. Ramdani, S. Perrey, and A. Varray, Recurrence Quantification Analysis of Surface Electromyographic Signal: Sensitivity to Potentiation and Neuromuscular Fatigue, J. Neurosci. Methods, 2009, 177, p 73–79

    Article  Google Scholar 

  27. F. Censi, V. Barbaro, P. Bartolini, G. Calcagnini, A. Michelucci, G.F. Gensini, and S. Cerutti, Recurrent Patterns of Atrial Depolarization During Atrial Fibrillation Assessed by Recurrence Plot Quantification, Ann. Biomed. Eng., 2000, 28, p 61–70

    Article  Google Scholar 

  28. M. Colafranceschi, A. Colosimo, J.P. Zbilut, V.N. Uversky, and A. Giuliani, Structure-Related Statistical Singularities Along Protein Sequences: A Correlation Study, J. Chem. Inf. Model., 2005, 45, p 83–189

    Article  Google Scholar 

  29. N. Marwan, M.C. Romano, M. Thiel, and J. Kurths, Recurrence Plots for the Analysis of Complex Systems, Phys. Rep., 2007, 438, p 237–329

    Article  Google Scholar 

  30. E. Cazares-Ibáñez, G.A. Vázquez-Coutiño, and E. Garcia-Ochoa, Application of Recurrence Plots as a New Tool in the Analysis of Electrochemical Oscillations Of Copper, J. Electroanal. Chem., 2005, 583, p 17–33

    Article  Google Scholar 

  31. E. Garcia-Ochoa, J. Gonzalez-Sanchez, N. Acuña, and J. Euan, Analysis of the Dynamics of Intergranular Corrosion Process of Sensitised 304 Stainless Steel Using Recurrence Plots, J. Appl. Electrochem., 2009, 39, p 637–645

    Article  Google Scholar 

  32. Y. Yang, T. Zhang, Y. Shao, G. Meng, and F. Wang, Effect of Hydrostatic Pressure on the Corrosion Behaviour of Ni-Cr-Mo-V High Strength Steel, Corros. Sci., 2010, 52, p 2697–2706

    Article  Google Scholar 

  33. C.P. Kim and K. Nobe, Polarization of Copper in Acidic and Alkaline Solutions, Corrosion, 1971, 27(9), p 382–385

    Article  Google Scholar 

  34. M. Stern, The Electrochemical Behavior, Including Hydrogen Overvoltage, of Iron in Acid Environments, J. Electrochem. Soc., 1955, 102(11), p 609–616

    Article  Google Scholar 

  35. S.A. Sameh, I.K. Salih, S.H. Alwash, and A. Al-Waisty, Corrosion of Copper in Deaerated and Oxygenated 0.1 M H2SO4 Solutions under Controlled Conditions of Mass Transfer, Eng. Technol. J., 2009, 27(5), p 993–1007

    Google Scholar 

  36. J.A. Koza, S. Mühlenhoff, M. Uhlemann, K. Eckert, A. Gebert, and L. Schultz, Desorption of Hydrogen from an Electrode Surface Under Influence of an External Magnetic Field—In-situ Microscopic Observations, Electrochem. Com., 2009, 11, p 425–429

    Article  Google Scholar 

  37. J.A. Koza, M. Uhlemann, A. Gebert, and L. Schultz, Desorption of Hydrogen from the Electrode Surface Under the Influence of an External Magnetic Field, Electrochem. Comm., 2008, 10, p 1330–1333

    Article  Google Scholar 

  38. J.A. Koza, M. Uhlemann, A. Gebert, and L. Schultz, The Effect of a Magnetic Field on the pH Value in Front of the Electrode Surface During the Electrodeposition of Co, Fe and CoFe Alloys, Electroanal. Chem., 2008, 617(2), p 194–202

    Article  Google Scholar 

  39. J.A. Koza, M. Uhlemann, A. Gebert, and L. Schultz, The Effect of Magnetic Fields on the Electrodeposition of CoFe Alloys, Electrochim. Acta, 2008, 53, p 5344–5353

    Article  Google Scholar 

  40. J.A. Koza, S. Muhlenholl, P. Zabinski, P.A. Nikrityuk, K. Eckert, M. Uhlemann, A. Gebert, T. Weier, L. Schultz, and S. Odenbach, Hydrogen Evolution Under the Influence of a Magnetic Field, Electrochim. Acta, 2011, 56(6), p 2665–2675

    Article  Google Scholar 

  41. E.-S.M. Sherif, R.M. Erasmus, and J.C. Comins, Inhibition of Copper Corrosion in Acidic Chloride Pickling Solutions by 5-(3-aminophenyl)-Tetrazole as a Corrosion Inhibitor, Corros. Sci., 2008, 50(12), p 3439–3445

    Article  Google Scholar 

  42. M. El-Sayed, Sherif, Corrosion Behavior of Copper in 0.50 M Hydrochloric Acid Pickling Solutions and its Inhibition by 3-Amino-1,2,4-triazole and 3-Amino-5-mercapto-1,2,4-triazole, Int. J. Electrochem. Sci., 2012, 7, p 1884–1897

    Google Scholar 

  43. K. Balakrishnan and V.K. Venkatesan, Cathodic Reduction of Oxygen on Copper and Brass, Electrochim. Acta, 1979, 24(2), p 131–138

    Article  Google Scholar 

  44. R. Adzic, Recent advances in the kinetics of oxygen reduction, Electrocatalysis, Chapter 5, J. Lipkowski and P.N. Ross, Ed., Wiley, New York, 1998

    Google Scholar 

  45. Z. Lu and W. Yang, In situ Monitoring the Effects of a Magnetic Field on the Open-Circuit Corrosion States of Iron in Acidic and Neutral Solutions, Corros. Sci., 2008, 50, p 510–522

    Article  Google Scholar 

  46. Z.P. Lu, D.L. Huang, W. Yang, and J. Congleton, Effects of an Applied Magnetic Field on the Dissolution and Passivation of Iron in Sulphuric Acid, Corros. Sci., 2003, 45, p 2233–2249

    Article  Google Scholar 

  47. Y.C. Tang, M. Gonzalez-Torreira, S. Yang, and A.J. Davenport, Effect of Magnetic Fields on Corrosion, JCSE, 2007, 6, p 46

    Google Scholar 

  48. G. Hinds, J.M.D. Coey, and M.E.G. Lyons, Influence of Magnetic Forces on Electrochemical Mass Transport, Electrochem. Commun., 2001, 3(5), p 215–218

    Article  Google Scholar 

  49. N.B. Chaure, F.M.F. Rhen, J. Hilton, and J.M.D. Coey, Design and Application of a Magnetic Field Gradient Electrode, Electrochem. Commun., 2007, 9(1), p 155–158

    Article  Google Scholar 

  50. M. Uhlemann, A. Krause, J.P. Chopart, and A. Gebert, Electrochemical Deposition of Co Under the Influence of High Magnetic Fields, J. Electrochem. Soc., 2005, 152(12), p C817–C826

    Article  Google Scholar 

Download references

Acknowledgments

We thank Ph.D. Oscar Ares (Cinvestav-Mérida, México) for his valuable advice and support in conducting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Garcia-Ochoa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia-Ochoa, E., Corvo, F., Genesca, J. et al. Copper Corrosion Under Non-uniform Magnetic Field in 0.5 M Hydrochloric Acid. J. of Materi Eng and Perform 26, 2129–2135 (2017). https://doi.org/10.1007/s11665-017-2667-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2667-x

Keywords

Navigation