Skip to main content
Log in

Effect of Growth Temperature on Morphological, Structural, and Optical Properties of ZnO Nanorods Using Modified Chemical Bath Deposition Method

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Zinc oxide (ZnO) nanorods (NRs) have been investigated as a function of different growth temperature using modified chemical bath deposition (M-CBD) method. In this study, air bubbles were utilized inside the growth solution as an original modified process. The synthesis of ZnO NRs was carried out through two steps. The first step was deposition of the ZnO seed layer on the glass substrate, while the second step was growing the ZnO NRs on the seeded substrate. The impacts of the growth temperature on the morphology and crystal structure of the ZnO samples were investigated using field emission scanning electron microscopy and x-ray diffraction. UV–Vis spectroscopy was also utilized to characterize the optical properties of the ZnO NRs. The results showed that the growth of the ZnO samples is a NRs-like shape. The ZnO samples possess the hexagonal wurtzite structure with high crystal quality, and no other phases from the impurity were observed. Additionally,the ZnO NRs were found to be well oriented along te (002) planes with diameters ranging from 71 nm to 328 nm and length from 294 nm to 2475 nm, while the aspect ratio was up to 25 with different growth temperatures. However, the UV–Vis spectrum showed that the optical transmittance of the ZnO NRs dropped from ~ 66% to ~ 3.3%, and the absorption band edge had been shifted to a lower-energy region as the growth temperature increased from 65°C to 95°C. This is possibly due to the scattering increase and absorption light from voids, grain size, and thickness of the ZnO NRs. Therefore, it has been demonstrated that the ZnO NRs grown by the M-CBD method at a growth temperature of 95°C gives the most favorable result, since the NRs possess the optimum, homogenous, and uniform distribution with a higher aspect ratio, crystal quality, crystal size, and band gap energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M. Rasheed, and R. Barillé, M. Rasheed, and R. Barillé, Opt. Quantum Electron., 2017, 49, p 190.

    Article  CAS  Google Scholar 

  2. M. Mickan, U. Helmersson, H. Rinnert, J. Ghanbaja, D. Muller, and D. Horwat, M. Mickan, U. Helmersson, H. Rinnert, J. Ghanbaja, D. Muller, and D. Horwat, Sol. Energy Mater. Sol. Cells., 2016, 157, p 742.

    Article  CAS  Google Scholar 

  3. Z. Zhang, X. Li, H. Chen, G. Shao, R. Zhang, and H. Lu, Z. Zhang, X. Li, H. Chen, G. Shao, R. Zhang, and H. Lu, Mater. Res. Express, 2018, 5, p 015021.

    Article  CAS  Google Scholar 

  4. M. Girtan, M. Girtan, Sol. Energy Mater. Sol. Cells., 2012, 100, p 153.

    Article  CAS  Google Scholar 

  5. S. Pearton, and F. Ren, S. Pearton, and F. Ren, Curr. Opin. Chem. Eng., 2014, 3, p 51.

    Article  Google Scholar 

  6. S. Park, C. Hwang, M. Ryu, S. Yang, C. Byun, J. Shin, J. Lee, K. Lee, M. Suk Oh, and S. Im, S. Park, C. Hwang, M. Ryu, S. Yang, C. Byun, J. Shin, J. Lee, K. Lee, M. Suk Oh, and S. Im, Adv. Mater., 2009, 21, p 678.

    Article  CAS  Google Scholar 

  7. M. Choi, D. Choi, M. Jin, I. Kim, S. Kim, J. Choi, S. Yoon Lee, J. Min Kim, and S. Kim, M. Choi, D. Choi, M. Jin, I. Kim, S. Kim, J. Choi, S. Yoon Lee, J. Min Kim, and S. Kim, Adv. Mater., 2009, 21, p 2185.

    Article  CAS  Google Scholar 

  8. L. Zhu, and W. Zeng, L. Zhu, and W. Zeng, Sens. Actuator A Phys., 2017, 267, p 242.

    Article  CAS  Google Scholar 

  9. S. Prakash Mondal, S. Dhar, and T. Majumder, in Physical Chemistry for Chemists and Chemical Engineers (Apple Academic Press, 2018), p 117

  10. M. Ahmad, and J. Zhu, M. Ahmad, and J. Zhu, J. Mater. Chem., 2011, 21, p 599.

    Article  CAS  Google Scholar 

  11. Q. Li, J. Bian, J. Sun, J. Wang, Y. Luo, K. Sun, and D. Yu, Q. Li, J. Bian, J. Sun, J. Wang, Y. Luo, K. Sun, and D. Yu, Appl. Surf. Sci., 2010, 256, p 1698.

    Article  CAS  Google Scholar 

  12. B. Cao, W. Cai, Y. Li, F. Sun, and L. Zhang, B. Cao, W. Cai, Y. Li, F. Sun, and L. Zhang, Nanotechnology, 2005, 16, p 1734.

    Article  CAS  Google Scholar 

  13. M. De Guire, L. Pitta Bauermann, H. Parikh, and J. Bill, in Chemical Solution Deposition of Functional Oxide Thin Films (Springer, 2013), p 319

    Chapter  Google Scholar 

  14. T. Lee, H. Ryu, and W. Lee, T. Lee, H. Ryu, and W. Lee, J. Alloys Compd., 2014, 597, p 85.

    Article  CAS  Google Scholar 

  15. A. Abdulrahman, S. Ahmed, N. Ahmed, and M. Almessiere, A. Abdulrahman, S. Ahmed, N. Ahmed, and M. Almessiere, Dig. J. Nanomater. Biostruct. (DJNB), 2016, 11, p 111.

    Google Scholar 

  16. J. Gomez, and O. Tigli, J. Gomez, and O. Tigli, J. Mater. Sci., 2013, 48, p 612.

    Article  CAS  Google Scholar 

  17. G. Amin, M. Asif, A. Zainelabdin, S. Zaman, O. Nur, and M. Willander, G. Amin, M. Asif, A. Zainelabdin, S. Zaman, O. Nur, and M. Willander, J. Nanomater., 2011, 2011, p 123.

    Article  CAS  Google Scholar 

  18. M. Kamruzzaman, and J. Zapien, M. Kamruzzaman, and J. Zapien, Crystallogr. Rep., 2018, 63, p 456.

    Article  CAS  Google Scholar 

  19. A. Mebdir Holi, Z. Zainal, Z. Abidin Talib, H. Lim, C. Yap, S. Chang, and A. Kadim Ayal, A. Mebdir Holi, Z. Zainal, Z. Abidin Talib, H. Lim, C. Yap, S. Chang, and A. Kadim Ayal, Optik, 2016, 127, p 11111.

    Article  CAS  Google Scholar 

  20. R. Nandi, R. Srinivasa, and S. Major, R. Nandi, R. Srinivasa, and S. Major, Mater. Chem. Phys., 2016, 182, p 155.

    Article  CAS  Google Scholar 

  21. S. Gawali, S. Mahadik, F. Pedraza, C. Bhosale, H. Pathan, and S. Jadkar, S. Gawali, S. Mahadik, F. Pedraza, C. Bhosale, H. Pathan, and S. Jadkar, J. Alloys Compd., 2017, 704, p 788.

    Article  CAS  Google Scholar 

  22. S. Safa, A. Khayatian, and M. Najafi, S. Safa, A. Khayatian, and M. Najafi, J. Adv. Mater. Process., 2015, 3, p 49.

    Google Scholar 

  23. O. Farhat, M. Halim, N. Ahmed, and M. Qaeed, O. Farhat, M. Halim, N. Ahmed, and M. Qaeed, Superlattices Microstruct., 2016, 100, p 1120.

    Article  CAS  Google Scholar 

  24. A. Abdulrahman, S. Ahmed, and M. Almessiere, A. Abdulrahman, S. Ahmed, and M. Almessiere, Dig. J. Nanomater. Biostruct. (DJNB), 2017, 12, p 1001.

    Google Scholar 

  25. Z. Zheng, J. Lin, X. Song, and Z. Lin, Z. Zheng, J. Lin, X. Song, and Z. Lin, Chem. Phys. Lett., 2018, 712, p 155.

    Article  CAS  Google Scholar 

  26. A. Ghosh, D. Chaudhary, A. Biswas, R. Thangavel, and G. Udayabhanu, A. Ghosh, D. Chaudhary, A. Biswas, R. Thangavel, and G. Udayabhanu, RSC Adv., 2016, 6, p 115204.

    Article  CAS  Google Scholar 

  27. R. Pietruszka, B. Sławomir Witkowski, S. Gieraltowska, P. Caban, L. Wachnicki, E. Zielony, K. Gwozdz, P. Bieganski, E. Placzek-Popko, and M. Godlewski, R. Pietruszka, B. Sławomir Witkowski, S. Gieraltowska, P. Caban, L. Wachnicki, E. Zielony, K. Gwozdz, P. Bieganski, E. Placzek-Popko, and M. Godlewski, Sol. Energy Mater. Sol. Cells, 2015, 143, p 99.

    Article  CAS  Google Scholar 

  28. V. Thanh Duoc, D. Thi Thanh Le, N. Duc Hoa, N. Van Duy, C. Manh Hung, H. Nguyen, and N. Van Hieu, V. Thanh Duoc, D. Thi Thanh Le, N. Duc Hoa, N. Van Duy, C. Manh Hung, H. Nguyen, and N. Van Hieu, J. Nanomater., 2019, 2019, p 122.

    Google Scholar 

  29. S. Goel, N. Sinha, H. Yadav, A. Joseph, and B. Kumar, S. Goel, N. Sinha, H. Yadav, A. Joseph, and B. Kumar, Phys. E Low Dimens. Syst. Nanostruct., 2017, 91, p 72.

    Article  CAS  Google Scholar 

  30. L. Cui, G. Wang, H. Zhang, R. Sun, X. Kuang, and J. Han, L. Cui, G. Wang, H. Zhang, R. Sun, X. Kuang, and J. Han, Ceram. Int., 2013, 39, p 3261.

    Article  CAS  Google Scholar 

  31. M. Firdaus Malek, M. Hafiz Mamat, T. Soga, S. Abdul Rahman, S. Abu Bakar, A. Syakirin Ismail, R. Mohamed, S. Alrokayan, H. Khan, and M. Rusop Mahmood, M. Firdaus Malek, M. Hafiz Mamat, T. Soga, S. Abdul Rahman, S. Abu Bakar, A. Syakirin Ismail, R. Mohamed, S. Alrokayan, H. Khan, and M. Rusop Mahmood, Jpn. J. Appl. Phys., 2015, 55, p 0115.

    Article  CAS  Google Scholar 

  32. S. Bidier, M. Hashim, A. Al-Diabat, and M. Bououdina, S. Bidier, M. Hashim, A. Al-Diabat, and M. Bououdina, Phys. E Low Dimens. Syst. Nanostruct., 2017, 88, p 169.

    Article  CAS  Google Scholar 

  33. E. Pourshaban, H. Abdizadeh, and M. Reza Golobostanfard, E. Pourshaban, H. Abdizadeh, and M. Reza Golobostanfard, Ceram. Int., 2016, 42, p 14721.

    Article  CAS  Google Scholar 

  34. S. Shaziman, A. Syakirin Ismail, M. Hafiz Mamat and A. Sabirin Zoolfakar, in IOP Conference Series, Materials Science and Engineering, p. 012016 (2015).

  35. V. Gaddam, R. Rakesh Kumar, M. Parmar, M. Nayak, and K. Rajanna, V. Gaddam, R. Rakesh Kumar, M. Parmar, M. Nayak, and K. Rajanna, RSC Adv., 2015, 5, p 89985.

    Article  CAS  Google Scholar 

  36. A. Umar, C. Ribeiro, A. Al-Hajry, Y. Masuda, and Y. Hahn, A. Umar, C. Ribeiro, A. Al-Hajry, Y. Masuda, and Y. Hahn, J. Phys. Chem. C., 2009, 113, p 14715.

    Article  CAS  Google Scholar 

  37. J. Zhao, X. Yan, Y. Lei, Y. Zhao, Y. Huang, and Y. Zhang, J. Zhao, X. Yan, Y. Lei, Y. Zhao, Y. Huang, and Y. Zhang, Adv. Mater. Res., 2012, 1, p 75.

    Article  Google Scholar 

  38. J. Yang, J. Lang, L. Yang, Y. Zhang, D. Wang, H. Fan, H. Liu, Y. Wang, and M. Gao, J. Yang, J. Lang, L. Yang, Y. Zhang, D. Wang, H. Fan, H. Liu, Y. Wang, and M. Gao, J. Alloys Compd., 2008, 450, p 521.

    Article  CAS  Google Scholar 

  39. K. Gurav, M. Gang, S. Shin, U. Patil, P. Deshmukh, G. Agawane, M. Suryawanshi, S. Pawar, P. Patil, and C. Lokhande, K. Gurav, M. Gang, S. Shin, U. Patil, P. Deshmukh, G. Agawane, M. Suryawanshi, S. Pawar, P. Patil, and C. Lokhande, Sens. Actuators B Chem., 2014, 190, p 439.

    Article  CAS  Google Scholar 

  40. R. Ahmad, N. Tripathy, M. Ahn, and Y. Hahn, R. Ahmad, N. Tripathy, M. Ahn, and Y. Hahn, Sci. Rep., 2017, 7, p 46475.

    Article  CAS  Google Scholar 

  41. Y. Qu, X. Huang, Y. Li, G. Lin, B. Guo, D. Song, and Q. Cheng, Y. Qu, X. Huang, Y. Li, G. Lin, B. Guo, D. Song, and Q. Cheng, J. Alloys Compd., 2017, 698, p 719.

    Article  CAS  Google Scholar 

  42. R. Wahab, S. Ansari, Y. Soon Kim, M. Song, and H. Shin, R. Wahab, S. Ansari, Y. Soon Kim, M. Song, and H. Shin, Appl. Surf. Sci., 2009, 255, p 4891.

    Article  CAS  Google Scholar 

  43. S. Baruah, and J. Dutta, S. Baruah, and J. Dutta, J. Cryst. Growth, 2009, 311, p 2549.

    Article  CAS  Google Scholar 

  44. S. Wang, T. Tseng, Y. Wang, C. Wang, H. Lu, and W. Shih, S. Wang, T. Tseng, Y. Wang, C. Wang, H. Lu, and W. Shih, Int. J. Appl. Ceram. Technol., 2008, 5, p 419.

    Article  CAS  Google Scholar 

  45. N. Harale, A. Kamble, N. Tarwal, I. Mulla, V. Rao, J. Kim, and P. Patil, N. Harale, A. Kamble, N. Tarwal, I. Mulla, V. Rao, J. Kim, and P. Patil, Ceram. Int., 2016, 42, p 12807.

    Article  CAS  Google Scholar 

  46. H. Rafaie, N. Samat, and R. Md Nor, H. Rafaie, N. Samat, and R. Md Nor, Mater. Lett., 2014, 137, p 297.

    Article  CAS  Google Scholar 

  47. T. Nguyen, N. Tuan, N. Cuong, N. Kien, P. Huy, V. Hieu Nguyen, and D. Nguyen, T. Nguyen, N. Tuan, N. Cuong, N. Kien, P. Huy, V. Hieu Nguyen, and D. Nguyen, J. Lumin., 2014, 156, p 199.

    Article  CAS  Google Scholar 

  48. P. Shankar, and J. Bosco Balaguru Rayappan, P. Shankar, and J. Bosco Balaguru Rayappan, J. Mater. Chem. C, 2017, 5, p 10869.

    Article  CAS  Google Scholar 

  49. Y. Yoon, K. Park, and S. Kim, Y. Yoon, K. Park, and S. Kim, Thin Solid Films, 2015, 597, p 125.

    Article  CAS  Google Scholar 

  50. K. Gautam, I. Singh, P. Bhatnagar, and K. Rao Peta, K. Gautam, I. Singh, P. Bhatnagar, and K. Rao Peta, Superlattices Microstruct., 2016, 93, p 101.

    Article  CAS  Google Scholar 

  51. N. Basinova, O. Cernohorsky, J. Grym, S. Kucerova, H. Faitova, R. Yatskiv, J. Vanis, J. Vesely, and J. Maixner, N. Basinova, O. Cernohorsky, J. Grym, S. Kucerova, H. Faitova, R. Yatskiv, J. Vanis, J. Vesely, and J. Maixner, Crystals, 2019, 9, p 566.

    Article  CAS  Google Scholar 

  52. M. Desai, V. Sharma, M. Prasad, S. Jadkar, G. Saratale, and S. Sartale, M. Desai, V. Sharma, M. Prasad, S. Jadkar, G. Saratale, and S. Sartale, Int. J. Hydrog. Energy, 2020, 45, p 5783.

    Article  CAS  Google Scholar 

  53. N. Syafinaz Ridhuan, K. Abdul Razak, Z. Lockman, and A. Abdul Aziz, N. Syafinaz Ridhuan, K. Abdul Razak, Z. Lockman, and A. Abdul Aziz, PLoS ONE, 2012, 7, p e50405.

    Article  CAS  Google Scholar 

  54. A. Abdulrahman, S. Ahmed, N. Ahmed, and M. Almessiere, A. Abdulrahman, S. Ahmed, N. Ahmed, and M. Almessiere, Dig. J. Nanomater. Biostruct., 2016, 11, p 1007.

    Google Scholar 

  55. S. Ahmed, S. Ahmed, Rev. Innovaciencia, 2018, 6, p 1.

    Google Scholar 

  56. U. Holzwarth, and N. Gibson, U. Holzwarth, and N. Gibson, Nat. Nanotechnol., 2011, 6, p 534.

    Article  CAS  Google Scholar 

  57. A. Faisal, R. Ismail, W. Khalef, and E. Salim, A. Faisal, R. Ismail, W. Khalef, and E. Salim, Opt. Quantum Electron., 2020, 52, p 1.

    Article  CAS  Google Scholar 

  58. A. Abdulrahman, S. Ahmed, N. Ahmed and M. Almessiere, in AIP Conference Proceedings (AIP Publishing LLC, 2017), p. 20004.

  59. P. Sundara Venkatesh, V. Purushothaman, S. Esakki Muthu, S. Arumugam, V. Ramakrishnan, K. Jeganathan, and K. Ramamurthi, P. Sundara Venkatesh, V. Purushothaman, S. Esakki Muthu, S. Arumugam, V. Ramakrishnan, K. Jeganathan, and K. Ramamurthi, Cryst. Eng. Commun., 2012, 14, p 4713.

    Article  CAS  Google Scholar 

  60. K. Onlaor, N. Chaithanatkun, and B. Tunhoo, K. Onlaor, N. Chaithanatkun, and B. Tunhoo, Curr. Appl. Phys., 2016, 16, p 1418.

    Article  Google Scholar 

  61. M. Gusatti, C. Campos, D. Souza, V. Moser, N. Kuhnen, and H. Riella, M. Gusatti, C. Campos, D. Souza, V. Moser, N. Kuhnen, and H. Riella, J. Nanosci. Nanotechnol., 2013, 13, p 8307.

    Article  CAS  Google Scholar 

  62. A. Singh, and H. Vishwakarma, A. Singh, and H. Vishwakarma, Mater. Sci. Pol., 2015, 33, p 751.

    Article  CAS  Google Scholar 

  63. R. Yatskiv, and J. Grym, R. Yatskiv, and J. Grym, Superlattices Microstruct., 2016, 99, p 214.

    Article  CAS  Google Scholar 

  64. E. Karaköse, and H. Çolak, E. Karaköse, and H. Çolak, Energy, 2017, 140, p 92.

    Article  CAS  Google Scholar 

  65. S. Lin, H. Hu, W. Zheng, Y. Qu, and F. Lai, S. Lin, H. Hu, W. Zheng, Y. Qu, and F. Lai, Nanoscale Res. Lett., 2013, 8, p 158.

    Article  CAS  Google Scholar 

  66. T. Flemban, V. Singaravelu, A. Aravindh Sasikala Devi, and I. Roqan, T. Flemban, V. Singaravelu, A. Aravindh Sasikala Devi, and I. Roqan, RSC Adv., 2015, 5, p 94670.

    Article  CAS  Google Scholar 

  67. A. Katoch, G. Sun, S. Choi, J. Byun, and S. Sub Kim, A. Katoch, G. Sun, S. Choi, J. Byun, and S. Sub Kim, Sens. Actuators B Chem., 2013, 185, p 411.

    Article  CAS  Google Scholar 

  68. H. Ghayour, H. Rezaie, S. Mirdamadi, and A. Nourbakhsh, H. Ghayour, H. Rezaie, S. Mirdamadi, and A. Nourbakhsh, Vacuum, 2011, 86, p 101.

    Article  CAS  Google Scholar 

  69. M. Wang, C. Ye, Y. Zhang, G. Hua, H. Wang, M. Kong, and L. Zhang, M. Wang, C. Ye, Y. Zhang, G. Hua, H. Wang, M. Kong, and L. Zhang, J. Cryst. Growth, 2006, 291, p 334.

    Article  CAS  Google Scholar 

  70. L. Roza, M. Yusri Abd Rahman, A. Umar, and M. Mat Salleh, L. Roza, M. Yusri Abd Rahman, A. Umar, and M. Mat Salleh, J. Alloys Compd., 2015, 618, p 153.

    Article  CAS  Google Scholar 

  71. G. Nisha Narayanan, R. Sankar Ganesh, and A. Karthigeyan, G. Nisha Narayanan, R. Sankar Ganesh, and A. Karthigeyan, Thin Solid Films, 2016, 598, p 39.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr Mukhtar Ahmed at SISAF, Ulster University, UK, for his valuable assistance throughout this investigation. They also want to thank Dr. David M.W. Waswa at Tishk International University for his diligent proofreading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azeez Abdullah Barzinjy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulrahman, A.F., Ahmed, S.M., Hamad, S.M. et al. Effect of Growth Temperature on Morphological, Structural, and Optical Properties of ZnO Nanorods Using Modified Chemical Bath Deposition Method. J. Electron. Mater. 50, 1482–1495 (2021). https://doi.org/10.1007/s11664-020-08705-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08705-7

Keywords

Navigation