Skip to main content

Advertisement

Log in

Effects of Ni and La Dopants on the Properties of ZnO and SnO2 Thin Films: Microstructural, Optical and Impedance Spectroscopy Studies

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The effects of Nickel (Ni) and Lanthanum (La) dopants on the structural, optical and electrical properties of ZnO and SnO2 thin films were investigated. Both oxide materials were deposited on glass substrates using a spray pyrolysis technique. Structural analysis indicated that grain size was better increased for doped ZnO and SnO2 with nickel than with La. Optical studies revealed that Ni- and La-doped ZnO films exhibit high transmittance of about 80–85% from the visible to infrared regions. Doping with La led to a reduction of energy band value from 3.46 eV for Ni-doped SnO2 to 3.34 eV for La-doped SnO2, while La doped ZnO showed a slight increase of energy band value compared to that of Ni doped ZnO. Electrical properties were calculated using electrochemical impedance spectroscopy at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Gratzel, Q. Wang, and J.E. Moser, J. Phys. Chem. B 109, 14945 (2005).

    Article  Google Scholar 

  2. M. Sluyters-Rehbach, Pure Appl. Chem. 66, 1831 (1994).

    Article  CAS  Google Scholar 

  3. Z. El khalidi, B. Hartiti, M. Siadat, E. Comini, H.M.M.M. Arachchige, S. Fadili, and P. Thevenin, J. Mater. Sci.: Mater. Electron. 30, 7681 (2019).

    CAS  Google Scholar 

  4. N.H. Al-Hardan, A.A. Aziz, M.J. Abdullah, and N.M. Ahmed, ECS J. Solid State Sci. Technol. 7, 487 (2018).

    Article  Google Scholar 

  5. A. Zankat, H. Boricha, V.G. Shrimali, K. Gadani, K. Sagapariya, B. Rajyaguru, M. Gal, D.D. Pandya, P.S. Solanki, and N.A. Shah, J. Alloys Compd. 788, 623 (2019).

    Article  CAS  Google Scholar 

  6. Y. Bouznit and A. Henni, Mater. Chem. Phys. 233, 242 (2019).

    Article  CAS  Google Scholar 

  7. N. Ahmad, S. Khan, and M.M.N. Ansari, Ceram. Int. 44, 15972 (2018).

    Article  CAS  Google Scholar 

  8. I. Stambolova, K. Konstantinov, S. Vassilev, P. Peshev, and T. Tsacheva, Mater. Chem. Phys. 63, 104 (2000).

    Article  CAS  Google Scholar 

  9. M.M.A. Ahmed, W.Z. Tawfik, M.A.K. Elfayoumi, M. Abdel-Hafiez, and S.I. El-Dek, J. Alloys Compd. 791, 586 (2019).

    Article  CAS  Google Scholar 

  10. M.S. Abdel-Wahab, A. Jilani, I.S. Yahia, and A.A. Al-Ghamdi, Superlattices Microstruct. 94, 108 (2016).

    Article  CAS  Google Scholar 

  11. M. Yehia, S. Labib, and S.M. Ismail, J. Electron. Mater. 7, 4170 (2019).

    Article  Google Scholar 

  12. M. T. Tliba, A. Benhaoua, R. Gheriani, B. Benhaoua, A. Rahal, C. Boukaous, and A. Tliba, Dig. J. Nanomater Bios. 13, 991 (2018)

  13. I.V. Tudose, P. Pascariu, C. Pachiu, F. Comanescu, M. Danila, R. Gavrila, E. Koudoumas, and M. Suchea, Proc. Int. Semicond. Conf. CAS 2018, 245 (2018).

    Google Scholar 

  14. P. Chaudhary, P. Singh, and V. Kumar, Optik (Stuttg) 158, 376 (2018).

    Article  CAS  Google Scholar 

  15. A. Manikandan, E. Manikandan, B. Meenatchi, S. Vadivel, S.K. Jaganathan, R. Ladchumananandasivam, M. Henini, M. Maaza, and J.S. Aanand, J. Alloys Compd. 723, 1155 (2017).

    Article  CAS  Google Scholar 

  16. S. Goel, N. Sinha, H. Yadav, A.J. Joseph, and B. Kumar, Phys. E Low-Dimens. Syst. Nanostruct. 91, 72 (2017).

    Article  CAS  Google Scholar 

  17. H.Y. He, J.F. Huang, J. Fei, and J. Lu, J. Mater. Sci.: Mater. Electron. 26, 1205 (2014).

    Google Scholar 

  18. C. Thangamani and K. Pushpanathan, Inorg. Nano-Metal Chem. 48, 131 (2018).

    Article  CAS  Google Scholar 

  19. V. Grace Masih, N. Kumar, and A. Srivastava, J. Appl. Spectrosc. 84, 1145 (2018).

    Article  CAS  Google Scholar 

  20. A.S. Ahmed, M. Shafeeq, M.L. Singla, S. Tabassum, A.H. Naqvi, and A. Azam, J. Lumin. 131, 1 (2011).

    Article  CAS  Google Scholar 

  21. M. Ajili, M. Castagné, and N.K. Turki, Superlattices Microstruct. 53, 213 (2013).

    Article  CAS  Google Scholar 

  22. M. Ajili, M. Castagné, and N. KamounTurki, Opt. - Int. J. Light Electron Opt. 126, 708 (2015).

    Article  CAS  Google Scholar 

  23. S. Dabbabi, T. Ben Nasr, S. Ammar, and N. Kamoun, Superlattices Microstruct. 123, 129 (2018).

    Article  CAS  Google Scholar 

  24. S.H. Basri, W.H.A. Majid, N.A. Talik, and M.A.M. Sarjidan, J. Alloys Compd. 769, 640 (2018).

    Article  CAS  Google Scholar 

  25. A.A. Aboud, M. Shaban, and N. Revaprasadu, RSC Adv. 9, 7729 (2019).

    Article  CAS  Google Scholar 

  26. Z. Xu, S. H. Teo, L. Gao, Z. Guo, Y. Kamata, S. Hayase, and T. Ma, Org. Electron. 73, 1 (2019).

  27. O. Bayram, E. Sener, E. İgman, and O. Simsek, J. Mater. Sci.: Mater. Electron. 30, 3452 (2019).

    CAS  Google Scholar 

  28. R.M. Kershi, F.M. Ali, and M.A. Sayed, J. Adv. Ceram. 7, 218 (2018).

    Article  CAS  Google Scholar 

  29. D. Raoufi and T. Raoufi, Appl. Surf. Sci. 255, 5812 (2009).

    Article  CAS  Google Scholar 

  30. G.T. Ang, G.H. Toh, M.Z.A. Bakar, A.Z. Abdullah, and M.R. Othman, Process Saf. Environ. Prot. 89, 186 (2011).

    Article  CAS  Google Scholar 

  31. B. Pal, D. Sarkar, and P.K. Giri, Appl. Surf. Sci. 356, 804 (2015).

    Article  CAS  Google Scholar 

  32. M. Shaban and A.M. El Sayed, Mater. Sci. Semicond. Process. 41, 323 (2016).

    Article  CAS  Google Scholar 

  33. Y.C. Chang, RSC Adv. 4, 56241 (2014).

    Article  CAS  Google Scholar 

  34. M.A.Y. Barakat, M. Shaban, and A.M. El Sayed, Mater. Res. Express 5, 066407 (2018).

    Article  Google Scholar 

  35. E. Muhire, J. Yang, X. Huo, and M. Gao, Electron. Opt. Mater. 25, 21 (2019)

  36. H. Mahmoudi Chenari, R. Zamiri, D. Maria Tobaldi, M. Shabani, A. Rebelo, J.S. Kumar, S.A. Salehizadeh, M.P.F. Graça, M.J. Soares, J. António Labrincha, and J.M.F. Ferreira, J. Sol-Gel. Sci. Technol. 84, 274 (2017).

    Article  CAS  Google Scholar 

  37. B. Khalfallah, F. Chaabouni, and M. Abaab, Indian J. Phys. 93, 439 (2019).

    Article  CAS  Google Scholar 

  38. A. Tataroğlu, Microelectron. Eng. 83, 2551 (2006).

    Article  Google Scholar 

  39. R.K. Parida, D.K. Pattanayak, B. Mohanty, B.N. Parida, and N.C. Nayak, Mater. Chem. Phys. 231, 372 (2019).

    Article  CAS  Google Scholar 

  40. L. Troncoso, J.A. Alonso, and A. Aguadero, J. Mater. Chem. A 3, 17797 (2015).

    Article  CAS  Google Scholar 

  41. A. Khan, M.I. Ahmed, A. Adam, A.M. Azad, and M. Qamar, Nanotechnology 28, 1 (2017).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samar Dabbabi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dabbabi, S., Souli, M., Ben Nasr, T. et al. Effects of Ni and La Dopants on the Properties of ZnO and SnO2 Thin Films: Microstructural, Optical and Impedance Spectroscopy Studies. J. Electron. Mater. 49, 1314–1321 (2020). https://doi.org/10.1007/s11664-019-07784-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07784-5

Keywords

Navigation