Skip to main content
Log in

Enhancement of the Thermoelectric Properties of BiCuSeO via In Doping and Powder Size Controlling

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

BiCuSeO is regarded as one of the most promising oxygenated thermoelectric materials because of its special natural superlattice structure and corresponding ultra-low thermal conductivity. In order to improve the thermoelectric performance, we should pay attention to both composition adjustment and structure adjustment. In this paper, we report a study which combines the two ways to improve the electrical transporting performance and suppress the thermal transporting performance, and we have effectively improved the thermoelectric performance. Firstly, by adjusting the composition with In doping at the Bi site, the band gap widens, the energy offset between heavy band and light band increases, and the mobility and electrical transporting performance improves correspondingly. The maximum ZT value is increased to 0.61. Based on this, the thermoelectric properties are further improved in the whole temperature range by increasing the mechanical alloying strength to refine the powders and adjusting the proportion of fine powder and coarse powder. Grain refinement increases the Cu vacancies and corresponding electrical properties. In addition, Grain refinement contributes to enhancing phonon scattering and effectively reduces the lattice thermal conductivity. The thermal conductivity decreases significantly in the whole temperature range because grain refinement can significantly enhance phonon scattering and reduce the lattice thermal conductivity. The appropriate proportion of coarse powder and fine powder can make full use of the fine grains to enhance phonon scattering while enlarging the frequency range of scattered phonons, thus further reducing the thermal conductivity. Finally, the ZT value increased to 1.08.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.K. Lee, K. Ahn, J. Cha, C. Zhou, H.S. Kim, G. Choi, and Y.E. Sung, J. Am. Chem. Soc. 139, 10887 (2017).

    Article  CAS  Google Scholar 

  2. F.J. DiSalvo, Science 285, 703–706 (1999).

    Article  CAS  Google Scholar 

  3. G. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  CAS  Google Scholar 

  4. L.D. Zhao, J. He, D. Berardan, Y. Lin, J.F. Li, C.W. Nan, and N. Dragoe, Energy Environ. Sci. 7, 2923 (2014).

    Google Scholar 

  5. J. Li, J. Sui, Y. Pei, C. Barreteau, D. Berardan, N. Dragoe, and L.D. Zhao, Energy Environ. Sci. 5, 8544 (2012).

    Google Scholar 

  6. L. Pan, D. Bérardan, L. Zhao, C. Barreteau, and N. Dragoe, Appl. Phys. Lett. 102, 023902 (2013).

    Article  Google Scholar 

  7. J. Li, J. Sui, Y.L. Pei, X. Meng, D. Berardan, N. Dragoe, W. Cai, and L.D. Zhao, J. Mater. Chem. A 2, 4904 (2014).

    Google Scholar 

  8. B. Feng, G. Li, Y. Hou, C. Zhang, C. Jiang, J. Hu, Q. Xiang, Y. Li, Z. He, and X. Fan, J. Alloys Compd. 712, 391 (2017).

    Article  Google Scholar 

  9. J.D. Lei, W.B. Guan, D. Zhang, Z. Ma, X.Y. Yang, C. Wang, and Y.X. Wang, Appl. Surf. Sci. 473, 988 (2019).

    Article  Google Scholar 

  10. Y. Liu, L.D. Zhao, Y. Liu, J. Lan, W. Xu, F. Li, B.P. Zhang, D. Berardan, N. Dragoe, Y.H. Lin, C.W. Nan, and J.F. Li, J. Am. Chem. Soc. 133, 20112 (2011).

    Article  CAS  Google Scholar 

  11. Z. Li, C. Xiao, S. Fan, Y. Deng, W. Zhang, and B. Ye, J. Am. Chem. Soc. 137, 6587 (2015).

    Article  CAS  Google Scholar 

  12. J. Sui, J. Li, J. He, Y.L. Pei, D. Berardan, H. Wu, N. Dragoe, W. Cai, and L.D. Zhao, Energy Environ. Sci. 6, 2918 (2013).

    Article  Google Scholar 

  13. Z. Dashevsky, S. Shusterman, M.P. Dariel, and I. Drabkin, J. Appl. Phys. 92, 1425 (2002).

    Article  CAS  Google Scholar 

  14. A. Bali, H. Wang, G.J. Snyder, and R.C. Mallik, J. Appl. Phys. 116, 033707 (2014).

    Article  Google Scholar 

  15. Q. Zhang, B.L. Liao, Y.C. Lan, K. Lukas, W.S. Liu, K. Esfarjani, D. Broido, C. Opeil, G. Chen, and Z.F. Ren, Proc. Natl. Acad. Sci. 110, 13262 (2013).

    Google Scholar 

  16. X.A. Fan, X. Cai, Z. Rong, F. Yang, G. Li, and Z. Gan, J. Alloys Compd. 607, 91 (2014).

    Article  CAS  Google Scholar 

  17. B. Feng, G. Li, Y. Hou, C. Zhang, C. Jiang, J. Hu, Q. Xiang, Y. Li, Z. He, and X. Fan, J. Alloys Compd. 754, 135 (2018).

    Article  Google Scholar 

  18. A. Hmood, A. Kadhim, and H.A. Hassan, J. Alloys Compd. 520, 2 (2012).

    Article  Google Scholar 

  19. H. Wang, Z.M. Gibbs, Y. Takagiwa, and G.J. Snyder, Energy Environ. Sci. 7, 804 (2014).

    Article  CAS  Google Scholar 

  20. Y. Pei, N.A. Heinz, A. LaLonde, and G.J. Snyder, Energy Environ. Sci. 4, 3640 (2011).

    Article  CAS  Google Scholar 

  21. C.M. Jaworski, M.D. Nielsen, H. Wang, S.N. Girard, W. Cai, W.D. Porter, and J.P. Heremans, Phys. Rev. B 87, 045203 (2013).

    Article  Google Scholar 

  22. Y. Liu, J. Ding, B. Xu, J. Lan, Y. Zheng, B. Zhan, and C. Nan, Appl. Phys. Lett. 106, 233903 (2015).

    Article  Google Scholar 

  23. Y. Yang, X. Liu, and X. Liang, Dalton Trans. 46, 2510 (2017).

    Article  CAS  Google Scholar 

  24. F. Li, J.F. Li, L.D. Zhao, K. Xiang, Y. Liu, B.P. Zhang, Y.H. Lin, C.W. Nan, and H.M. Zhu, Energy Environ. Sci. 5, 7188 (2012).

    Article  CAS  Google Scholar 

  25. H. Lin, H. Chen, N. Ma, Y.J. Zheng, J.N. Shen, J.S. Yu, and L.M. Wu, Inorg. Chem. Front. 4, 1273 (2017).

    Article  CAS  Google Scholar 

  26. B. Paul and P. Banerji, J. Appl. Phys. 108, 064322 (2010).

    Article  Google Scholar 

  27. B. Feng, G. Li, Z. Pan, C. Zhang, C. Jiang, J. Hu, Q. Xiang, Y. Li, Z. He, and X. Fan, J. Solid State Chem. 265, 306 (2018).

    Article  CAS  Google Scholar 

  28. S.I. Kim, K.H. Lee, H.A. Mun, H.S. Kim, S.W. Hwang, J.W. Roh, and G.J. Snyder, Science 348, 109 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51674181), Key Project of Department of Education of Hubei Provincial (D20151103), and National Defense Pre-research Foundation of Wuhan University of Science and Technology (GF201707).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi’an Fan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, B., Li, G., Hu, X. et al. Enhancement of the Thermoelectric Properties of BiCuSeO via In Doping and Powder Size Controlling. J. Electron. Mater. 49, 611–620 (2020). https://doi.org/10.1007/s11664-019-07720-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07720-7

Keywords

Navigation