Skip to main content

Advertisement

Log in

Performance Analysis of a Thermoelectric Generation System with Different Flow Configurations

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Thermoelectric technology is an unconventional approach for renewable energy generation with the aim of reducing waste via improved overall efficiency. There is a primary need to develop such environmentally friendly systems that can harness readily available renewable energy resources and utilize them for power generation at reduced cost. Such systems enable conversion of waste heat. In this work, the effects of four parameters, i.e., the quantity and quality of heat, the composition of the waste stream in liquid phase, and losses during conversion, on the conversion efficiency are studied, and a method proposed to measure them instead of using the rating provided by the manufacturer. The results show that the heat exchanger configuration has an important impact on the power generation established through parallel and counterflow arrangements. The temperature difference (heat quality) achieved between the hot and cold fluid is lower in case of a counterflow heat exchanger if the other parameters remain the same. The counterflow configuration is more effective than the parallel flow configuration, but suffers from greater convective losses. Higher thermal energy consumption is noted in case of parallel flow due to the uneven temperature difference along the flow passage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Orr, A. Akbarzadeh, M. Mochizuki, and R. Singh, Appl. Therm. Eng. 101, 490 (2016).

    Article  Google Scholar 

  2. M.F.C. Pa, Development of alternative power supply to charge small gadgets. (Universiti Teknikal Malaysia Melaka, 2015), http://eprints.utem.edu.my/17241/1/Development%20Of%20Alternative%20Power%20Supply%20To%20Charge%20Small%20Gadgets%2024%20Pages.pdf. Accessed 20 June 2018.

  3. X. Gou, H. Xiao, and S. Yang, Appl. Energy 87, 3131 (2010).

    Article  Google Scholar 

  4. A. Patyk, Appl. Energy 102, 1448 (2013).

    Article  Google Scholar 

  5. X. Liang, X. Sun, H. Tian, G. Shu, Y. Wang, and X. Wang, Appl. Energy 130, 190 (2014).

    Article  Google Scholar 

  6. W. Liu, Q. Jie, H.S. Kim, and Z. Ren, Acta Mater. 87, 357 (2015).

    Article  Google Scholar 

  7. K. Mboyi, J. Ren, and Y. Liu, Chin. J. Aeronaut. 28, 427 (2015).

    Article  Google Scholar 

  8. A.Y. Faraji, R. Singh, M. Mochizuki, and A. Akbarzadeh, J. Electron. Mater. 43, 1940 (2014).

    Article  Google Scholar 

  9. M.S. Bohn, J. Heat Transf. 103, 693 (1981).

    Article  Google Scholar 

  10. T. Haruyama, Cryogenics 41, 325 (2001).

    Article  Google Scholar 

  11. W. Li, M.C. Paul, J. Siviter, A. Montecucco, A.R. Knox, T. Sweet, and D.H. Gregory, Case Stud. Therm. Eng. 8, 164 (2016).

    Article  Google Scholar 

  12. M.A. Muñoz-García, G.P. Moreda, M.P. Raga-Arroyo, and O. Marín-González, Comput. Electron. Agric. 93, 63 (2013).

    Article  Google Scholar 

  13. A.S. Cubukcu, D.F.R. Romero, and G.A. Urban, Sens. Actuators A 208, 73 (2014).

    Article  Google Scholar 

  14. A. Dewan, S.U. Ay, M.N. Karim, and H. Beyenal, J. Power Sources 245, 129 (2014).

    Article  Google Scholar 

  15. S. Tundee, N. Srihajong, and S. Charmongkolpradit, Energy Proc. 48, 453 (2014).

    Article  Google Scholar 

  16. M.F. Remeli, A. Date, B. Orr, L.C. Ding, B. Singh, N.D.N. Affandi, and A. Akbarzadeh, Energy Convers. Manag. 111, 147 (2016).

    Article  Google Scholar 

  17. Y. Wang, S. Su, T. Liu, G. Su, and J. Chen, Energy 90, 1575 (2015).

    Article  Google Scholar 

  18. R. Ahiska and H. Mamur, IET Renew. Power Gener. 7, 700 (2013).

    Article  Google Scholar 

  19. Y.J. Dai, R.Z. Wang, and L. Ni, Renew. Energy 28, 949 (2003).

    Article  Google Scholar 

  20. X. Xu, S. Zhou, M.M. Meyers, B.G. Sammakia, and B.T. Murray, J. Electron. Packag. 136, 041006 (2014).

    Article  Google Scholar 

  21. S.M. O’Shaughnessy, M.J. Deasy, J.V. Doyle, and A.J. Robinson, Energy Sustain. Dev. 28, 41 (2015).

    Article  Google Scholar 

  22. M.H. Elsheikh, D.A. Shnawah, M.F.M. Sabri, S.B.M. Said, M.H. Hassan, M.B.A. Bashir, and M. Mohamad, Renew. Sustain. Energy Rev. 30, 337 (2014).

    Article  Google Scholar 

  23. E. Hourdakis and A.G. Nassiopoulou, Sensors 13, 13596 (2013).

    Article  Google Scholar 

  24. A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.K. Yu, W.A. Goddard Iii, and J.R. Heath, Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, ed. V. Dusastre (Singapore: World Scientific, 2011), pp. 116–119.

    Google Scholar 

  25. S. LeBlanc, Sustain. Mater. Technol. 1, 26 (2014).

    Google Scholar 

  26. A.A. Sherchenkov, Y.I. Shtern, R.E. Mironov, M.Y. Shtern, and M.S. Rogachev, Nanotechnol. Russ. 10, 827 (2015).

    Article  Google Scholar 

  27. L. Hu, H. Wu, T. Zhu, C. Fu, J. He, P. Ying, and X. Zhao, Adv. Energy Mater. 5, 1500411 (2015).

    Article  Google Scholar 

  28. M.F. Remeli, K. Verojporn, B. Singh, L. Kiatbodin, A. Date, and A. Akbarzadeh, Energy Proc. 75, 608 (2015).

    Article  Google Scholar 

  29. D.M. Rowe and G. Min, IEEE Proc. Sci. Meas. Technol. 143, 351 (1996).

    Article  Google Scholar 

  30. K. Takahashi, T. Kanno, A. Sakai, H. Tamaki, H. Kusada, and Y. Yamada, Sci. Rep. 3, 1501 (2013).

    Article  Google Scholar 

  31. K.T. Mueller, O. Waters, V. Bubnovich, N. Orlovskaya, and R.H. Chen, Energy 56, 108 (2013).

    Article  Google Scholar 

  32. A. Montecucco and A.R. Knox, Appl. Energy 118, 166 (2014).

    Article  Google Scholar 

  33. Y.Y. Hsiao, W.C. Chang, and S.L. Chen, Energy 35, 1447 (2010).

    Article  Google Scholar 

  34. T. Kyono, R.O. Suzuki, and K. Ono, IEEE Trans. Energy Convers. 22, 58 (2003).

    Google Scholar 

  35. J. Yu and H. Zhao, J. Power Sources 172, 428 (2007).

    Article  Google Scholar 

  36. K. Ono and R.O. Suzuki, JOM 50, 49 (1998).

    Article  Google Scholar 

  37. BCS, Waste heat recovery: technology and opportunities in U.S. industries (Energy.gov, 2008), https://www1.eere.energy.gov/manufacturing/intensiveprocesses/pdfs/waste_heat_recovery.pdf Accessed 20 June 2018.

  38. A. Montecucco, J. Siviter, and A. R. Knox, in Energy Conversion Congress and Exposition IEEE (2012), pp. 2777–2783.

  39. L.E. Bell, Science 321, 1457 (2008).

    Article  Google Scholar 

  40. D.B. Gingerich and M.S. Mauter, Environ. Sci. Technol. 49, 8297 (2015).

    Article  Google Scholar 

  41. J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, and G.J. Snyder, Science 321, 554 (2008).

    Article  Google Scholar 

  42. E. Hourdakis and A.G. Nassiopoulou, Sensors 10, 13596 (2013).

    Article  Google Scholar 

  43. R.Y. Nuwayhid, A. Shihadeh, and N. Ghaddar, Energy Convers. Manag. 46, 1631 (2005).

    Article  Google Scholar 

  44. M. Boonyasri, J. Jamradloedluk, C. Lertsatitthanakorn, A. Therdyothin, and S. Soponronnarit, J. Electron. Mater. 46, 3043 (2017).

    Article  Google Scholar 

  45. J. Chen, K. Li, C. Liu, M. Li, Y. Lv, L. Jia, and S. Jiang, Energy 10, 1329 (2017).

    Google Scholar 

  46. X. Niu, J. Yu, and S. Wang, J. Power Sources 188, 621 (2009).

    Article  Google Scholar 

  47. K.M. Saqr, M.K. Mansour, and M.N. Musa, Int. J. Automot. Technol. 9, 155 (2008).

    Article  Google Scholar 

  48. R.O. Suzuki, Y. Sasaki, T. Fujisaka, and M. Chen, J. Electron. Mater. 41, 1766 (2012).

    Article  Google Scholar 

  49. T. Ali, R.A. Bakar, B.A. Sup, M.F. Zainudin, and G.L. Ming, Energy Proc. 68, 3 (2015).

    Article  Google Scholar 

  50. W. Sun, Z. Zhao, and Y. Wang, Energies 10, 219 (2017).

    Article  Google Scholar 

Download references

Acknowledgments

The authors sincerely acknowledge BIT Sindri and IIT (ISM) Dhanbad for the development of the experimental setup. We also acknowledge Prof. S.C. Roy and N.P. Choudhry of the Mechanical Engineering Department, BIT Sindri, India for providing valuable suggestions and help. This research did not receive any specific grants from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Purushottam Kumar Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Mandal, S.K., Singh, P.K. et al. Performance Analysis of a Thermoelectric Generation System with Different Flow Configurations. J. Electron. Mater. 48, 4607–4617 (2019). https://doi.org/10.1007/s11664-019-07249-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07249-9

Keywords

Navigation