Skip to main content
Log in

Characterization and Photoluminescent, Photocatalytic and Antimicrobial Properties of Boron-Doped TiO2 Nanoparticles Obtained by Microwave-Assisted Solvothermic Method

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Boron doped TiO2:xB (x = 0 mol.%, 1 mol.%, 2 mol.%, 4 mol.% and 8 mol.%) was quickly synthesized by a microwave-assisted solvothermic method at 140°C for 10 min. The nanoparticles obtained were characterized by x-ray diffraction (XRD), Fourier transform infrared spectroscopy, Raman spectroscopy, photoluminescence, field emission scanning electron microscopy, electron microscopy and diffuse optical reflectance. The photocatalytic properties were estimated against methylene blue dye. The antimicrobial activity was measured by the disc diffusion technique against S. aureus and E. coli bacteria. The XRD patterns show that there was no formation of secondary phases and that all the peaks correspond to the anatase phase of TiO2. Rietveld’s refinement showed that the addition of B3+ in the TiO2 lattice promotes a reduction in the size of the crystallites and this reduction it effectively increases the degradation capacity of the methylene blue dye, which after 50 min the 8%B sample degraded completely, while the pure TiO2 sample reduced its concentration by 95%. Boron-doped TiO2 was effective when reused and after the third cycle the photocatalytic activity of the powders was maintained. In addition, the incorporation of 8%B in the TiO2 lattice resulted in an increase from 8.66 mm to 15.61 mm and 9.04 mm to 13.65 mm in the inhibition halos of the S. aureus and E. coli bacteria, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Reddy, L. Chen, Y. Zhang, and Y. Yang, J. Clean. Prod. 65, 561 (2014).

    Article  Google Scholar 

  2. J. Dasgupta, J. Sikder, S. Chakraborty, S. Curcio, and E. Drioli, J. Environ. Manag. 147, 55 (2015).

    Article  Google Scholar 

  3. F. Deniz and R.A. Kepekci, Fibers Polym. 18, 278 (2017).

    Article  Google Scholar 

  4. K. Intarasuwan, P. Amornpitoksuk, S. Suwanboon, and P. Graidist, Sep. Purif. Technol. 177, 304 (2017).

    Article  Google Scholar 

  5. K. Zheng, M.I. Setyawati, D.T. Leong, and J. Xie, Coord. Chem. Rev. 357, 1 (2018).

    Article  Google Scholar 

  6. A.D. Anderson, J.M. Nelson, S. Rossiter, and F.J. Angulo, Microb. Drug Resist. 9, 373 (2003).

    Article  Google Scholar 

  7. C.M. Schroeder, D.G. White, and J. Meng, Food Microbiol. 21, 249 (2004).

    Article  Google Scholar 

  8. P.G. Luo and F.J. Stutzenberger, Adv. Appl. Microbiol. 63, 145 (2008).

  9. S. Zinatloo-Ajabshir and M. Salavati-Niasari, Ceram. Int. 41, 567 (2015).

    Article  Google Scholar 

  10. S. Mortazavi-Derazkola, S. Zinatloo-Ajabshir, and M. Salavati-Niasari, Ceram. Int. 41, 9593 (2015).

    Article  Google Scholar 

  11. S. Mortazavi-Derazkola, S. Zinatloo-Ajabshir, and M. Salavati-Niasari, RSC Adv. 5, 56666 (2015).

    Article  Google Scholar 

  12. Y. Wang, Y. Wu, H. Yang, X. Xue, and Z. Liu, Vacuum 131, 58 (2016).

    Article  Google Scholar 

  13. A. Zielińska-Jurek, Z. Wei, I. Wysocka, P. Szweda, and E. Kowalska, Appl. Surf. Sci. 353, 317 (2015).

    Article  Google Scholar 

  14. J. Zhao, T. Minegishi, L. Zhang, M. Zhong, Gunawan, M. Nakabayashi, G. Ma, T. Hisatomi, M. Katayama, S. Ikeda, N. Shibata, T. Yamada, and K. Domen, Angew. Chem. Int. Ed. 53, 11808 (2014).

    Article  Google Scholar 

  15. L. Zhang, L. Li, Z. Mou, and X. Li, Procedia Eng. 27, 552 (2012).

    Article  Google Scholar 

  16. A.J. Haider, R.H. Al-Anbari, G.R. Kadhim, and C.T. Salame, Energy Procedia 119, 332 (2017).

    Article  Google Scholar 

  17. B. Dindar and A.C. Güler, Environ Nanotechnol Monit. Manag 10, 457 (2018).

    Google Scholar 

  18. B. Toby, J. Appl. Crystallogr. 34, 210 (2001).

    Article  Google Scholar 

  19. D.L. Wood and J. Tauc, Phys. Rev. B 5, 3144 (1972).

    Article  Google Scholar 

  20. E. Araújo, A.S. Pimenta, F.M.C. Feijó, R.V.O. Castro, M. Fasciotti, T.V.C. Monteiro, and K.M.G. Lima, J. Appl. Microbiol. 124, 85 (2017).

    Article  Google Scholar 

  21. T. de Keijser, E.J. Mittemeijer, and H.C.F. Rozendaal, J. Appl. Crystallogr. 16, 309 (1983).

    Article  Google Scholar 

  22. H. Rietveld, J. Appl. Crystallogr. 2, 65 (1969).

    Article  Google Scholar 

  23. D.H. Quiñones, A. Rey, P.M. Álvarez, F.J. BeltrÁn, and G. Li Puma, Appl. Catal. B Environ. 178, 74 (2015).

    Article  Google Scholar 

  24. A. Barmeh, M.R. Nilforoushan, and S. Otroj, Thin Solid Films 666, 137 (2018).

    Article  Google Scholar 

  25. K. Liu, T.A. Schmedake, and R. Tsu, Phys. Lett. A 372, 4517 (2008).

    Article  Google Scholar 

  26. P.C.S. Bezerra, R.P. Cavalcante, A. Garcia, H. Wender, M.A.U. Martines, G.A. Casagrande, J. Giménez, P. Marco, S.C. Oliveira, and A. Machulek Jr, J. Braz. Chem. Soc. 28, 1788 (2017).

    Google Scholar 

  27. M.B. Askari, Z.T. Banizi, S. Soltani, and M. Seifi, Optik 157, 230 (2018).

    Article  Google Scholar 

  28. K. Kalantari, M. Kalbasi, M. Sohrabi, and S.J. Royaee, Ceram. Int. 42, 14834 (2016).

    Article  Google Scholar 

  29. W.-K. Wang, J.-J. Chen, M. Gao, Y.-X. Huang, X. Zhang, and H.-Q. Yu, Appl. Catal. B 195, 69 (2016).

    Article  Google Scholar 

  30. D. Zhao, Y. Yu, C. Cao, J. Wang, E. Wang, and Y. Cao, Appl. Surf. Sci. 345, 67 (2015).

    Article  Google Scholar 

  31. D. Sánchez-Rodríguez, M.G. Méndez Medrano, H. Remita, and V. Escobar-Barrios, J. Environ. Chem. Eng. 6, 1601 (2018).

    Article  Google Scholar 

  32. C. Gautam, A.K. Yadav, V.K. Mishra, and K. Vikram, Open J. Inorg. Non-Metal Mater. 02, 8 (2012).

    Google Scholar 

  33. A. Li Bassi, D. Cattaneo, V. Russo, C.E. Bottani, E. Barborini, T. Mazza, P. Piseri, P. Milani, F.O. Ernst, K. Wegner, and S.E. Pratsinis, J. Appl. Phys. 98, 074305 (2005).

    Article  Google Scholar 

  34. H.C. Choi, Y.M. Jung, and S.B. Kim, Vib. Spectrosc. 37, 33 (2005).

    Article  Google Scholar 

  35. H.-W. Cho, K.-L. Liao, J.-S. Yang, and J.-J. Wu, Appl. Surf. Sci. 440, 125 (2018).

    Article  Google Scholar 

  36. M. Momose and Y. Furukawa, Mater. Sci. Semicond. Process. 39, 748 (2015).

    Article  Google Scholar 

  37. V.A. Volodin, V. Mortet, A. Taylor, Z. Remes, T.H. Stuchliková, and J. Stuchlik, Solid State Commun. 276, 33 (2018).

    Article  Google Scholar 

  38. L. Tolvaj, K. Mitsui, and D. Varga, Wood Sci. Technol. 45, 135 (2011).

    Article  Google Scholar 

  39. M. Wang, J. Han, P. Guo, M. Sun, Y. Zhang, Z. Tong, M. You, and C. Lv, J. Phys. Chem. Solids 113, 86 (2018).

    Article  Google Scholar 

  40. A. Sarkar, S. Ghosh, S. Chaudhuri, and A.K. Pal, Thin Solid Films 204, 255 (1991).

    Article  Google Scholar 

  41. D. Kohen, A. Vohra, R. Loo, W. Vandervorst, N. Bhargava, J. Margetis, and J. Tolle, J. Cryst. Growth 483, 285 (2018).

    Article  Google Scholar 

  42. N. Masahashi and M. Oku, Appl. Surf. Sci. 254, 7056 (2008).

    Article  Google Scholar 

  43. C. Zhang, Y. Liu, J. Zhou, W. Jin, and W. Chen, Dyes Pigm. 156, 213 (2018).

    Article  Google Scholar 

  44. J.A. Freitas, K. Doverspike, P.B. Klein, Y.L. Khong, and A.T. Collins, Diam. Relat. Mater. 3, 821 (1994).

    Article  Google Scholar 

  45. M.M. Momeni, M. Hakimian, and A. Kazempour, Ceram. Int. 41, 13692 (2015).

    Article  Google Scholar 

  46. L. Li, Y. Yang, X. Liu, R. Fan, Y. Shi, S. Li, L. Zhang, X. Fan, P. Tang, R. Xu, W. Zhang, Y. Wang, and L. Ma, Appl. Surf. Sci. 265, 36 (2013).

    Article  Google Scholar 

  47. M. Mittal, A. Gupta, and O.P. Pandey, Sol. Energy 165, 206 (2018).

    Article  Google Scholar 

  48. L.M.P. Garcia, M.T.S. Tavares, N.F. Andrade Neto, R.M. Nascimento, C.A. Paskocimas, E. Longo, M.R.D. Bomio, and F.V. Motta, J. Mater. Sci. Mater. Electron. 29, 6530 (2018).

    Article  Google Scholar 

  49. M. Zare, K. Namratha, K. Byrappa, D.M. Surendra, S. Yallappa, and B. Hungund, J. Mater. Sci. Technol. 34, 1035 (2018).

    Article  Google Scholar 

  50. T. Xia, M. Kovochich, M. Liong, L. Mädler, B. Gilbert, H. Shi, J.I. Yeh, J.I. Zink, and A.E. Nel, ACS Nano 2, 2121 (2008).

    Article  Google Scholar 

  51. J. Ma, A. Hui, J. Liu, and Y. Bao, Mater. Lett. 158, 420 (2015).

    Article  Google Scholar 

  52. A.V. Badarinath, K. Mallikarjuna Rao, C. Madhu Sudhana Chetty, S. Ramkanth, T.V.S. Rajan, and K. Gnanaprakash, Int. J. PharmTech Res. 2, 1276 (2010).

    Google Scholar 

  53. S.M. Dizaj, F. Lotfipour, M. Barzegar-Jalali, M.H. Zarrintan, and K. Adibkia, Mater. Sci. Eng. C 44, 278 (2014).

    Article  Google Scholar 

  54. Y. Xie, Y. He, P.L. Irwin, T. Jin, and X. Shi, Appl. Environ. Microbiol. 77, 2325 (2011).

    Article  Google Scholar 

Download references

Acknowledgments

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES/PROCAD)—Finance Code 2013/2998/2014 and the authors give thanks for the financial support of the Brazilian research financing institutions: CNPq No. 307546/2014-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. F. Andrade Neto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrade Neto, N.F., Zanatta, P., Nascimento, L.E. et al. Characterization and Photoluminescent, Photocatalytic and Antimicrobial Properties of Boron-Doped TiO2 Nanoparticles Obtained by Microwave-Assisted Solvothermic Method. J. Electron. Mater. 48, 3145–3156 (2019). https://doi.org/10.1007/s11664-019-07076-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07076-y

Keywords

Navigation