Journal of Electronic Materials

, Volume 48, Issue 5, pp 3145–3156 | Cite as

Characterization and Photoluminescent, Photocatalytic and Antimicrobial Properties of Boron-Doped TiO2 Nanoparticles Obtained by Microwave-Assisted Solvothermic Method

  • N. F. Andrade NetoEmail author
  • P. Zanatta
  • L. E. Nascimento
  • R. M. Nascimento
  • M. R. D. Bomio
  • F. V. Motta


Boron doped TiO2:xB (x = 0 mol.%, 1 mol.%, 2 mol.%, 4 mol.% and 8 mol.%) was quickly synthesized by a microwave-assisted solvothermic method at 140°C for 10 min. The nanoparticles obtained were characterized by x-ray diffraction (XRD), Fourier transform infrared spectroscopy, Raman spectroscopy, photoluminescence, field emission scanning electron microscopy, electron microscopy and diffuse optical reflectance. The photocatalytic properties were estimated against methylene blue dye. The antimicrobial activity was measured by the disc diffusion technique against S. aureus and E. coli bacteria. The XRD patterns show that there was no formation of secondary phases and that all the peaks correspond to the anatase phase of TiO2. Rietveld’s refinement showed that the addition of B3+ in the TiO2 lattice promotes a reduction in the size of the crystallites and this reduction it effectively increases the degradation capacity of the methylene blue dye, which after 50 min the 8%B sample degraded completely, while the pure TiO2 sample reduced its concentration by 95%. Boron-doped TiO2 was effective when reused and after the third cycle the photocatalytic activity of the powders was maintained. In addition, the incorporation of 8%B in the TiO2 lattice resulted in an increase from 8.66 mm to 15.61 mm and 9.04 mm to 13.65 mm in the inhibition halos of the S. aureus and E. coli bacteria, respectively.


Boron-doped TiO2 microwave-assisted solvothermic method reuse photocatalytic antimicrobial activity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES/PROCAD)—Finance Code 2013/2998/2014 and the authors give thanks for the financial support of the Brazilian research financing institutions: CNPq No. 307546/2014-4.


  1. 1.
    N. Reddy, L. Chen, Y. Zhang, and Y. Yang, J. Clean. Prod. 65, 561 (2014).CrossRefGoogle Scholar
  2. 2.
    J. Dasgupta, J. Sikder, S. Chakraborty, S. Curcio, and E. Drioli, J. Environ. Manag. 147, 55 (2015).CrossRefGoogle Scholar
  3. 3.
    F. Deniz and R.A. Kepekci, Fibers Polym. 18, 278 (2017).CrossRefGoogle Scholar
  4. 4.
    K. Intarasuwan, P. Amornpitoksuk, S. Suwanboon, and P. Graidist, Sep. Purif. Technol. 177, 304 (2017).CrossRefGoogle Scholar
  5. 5.
    K. Zheng, M.I. Setyawati, D.T. Leong, and J. Xie, Coord. Chem. Rev. 357, 1 (2018).CrossRefGoogle Scholar
  6. 6.
    A.D. Anderson, J.M. Nelson, S. Rossiter, and F.J. Angulo, Microb. Drug Resist. 9, 373 (2003).CrossRefGoogle Scholar
  7. 7.
    C.M. Schroeder, D.G. White, and J. Meng, Food Microbiol. 21, 249 (2004).CrossRefGoogle Scholar
  8. 8.
    P.G. Luo and F.J. Stutzenberger, Adv. Appl. Microbiol. 63, 145 (2008).Google Scholar
  9. 9.
    S. Zinatloo-Ajabshir and M. Salavati-Niasari, Ceram. Int. 41, 567 (2015).CrossRefGoogle Scholar
  10. 10.
    S. Mortazavi-Derazkola, S. Zinatloo-Ajabshir, and M. Salavati-Niasari, Ceram. Int. 41, 9593 (2015).CrossRefGoogle Scholar
  11. 11.
    S. Mortazavi-Derazkola, S. Zinatloo-Ajabshir, and M. Salavati-Niasari, RSC Adv. 5, 56666 (2015).CrossRefGoogle Scholar
  12. 12.
    Y. Wang, Y. Wu, H. Yang, X. Xue, and Z. Liu, Vacuum 131, 58 (2016).CrossRefGoogle Scholar
  13. 13.
    A. Zielińska-Jurek, Z. Wei, I. Wysocka, P. Szweda, and E. Kowalska, Appl. Surf. Sci. 353, 317 (2015).CrossRefGoogle Scholar
  14. 14.
    J. Zhao, T. Minegishi, L. Zhang, M. Zhong, Gunawan, M. Nakabayashi, G. Ma, T. Hisatomi, M. Katayama, S. Ikeda, N. Shibata, T. Yamada, and K. Domen, Angew. Chem. Int. Ed. 53, 11808 (2014).CrossRefGoogle Scholar
  15. 15.
    L. Zhang, L. Li, Z. Mou, and X. Li, Procedia Eng. 27, 552 (2012).CrossRefGoogle Scholar
  16. 16.
    A.J. Haider, R.H. Al-Anbari, G.R. Kadhim, and C.T. Salame, Energy Procedia 119, 332 (2017).CrossRefGoogle Scholar
  17. 17.
    B. Dindar and A.C. Güler, Environ Nanotechnol Monit. Manag 10, 457 (2018).Google Scholar
  18. 18.
    B. Toby, J. Appl. Crystallogr. 34, 210 (2001).CrossRefGoogle Scholar
  19. 19.
    D.L. Wood and J. Tauc, Phys. Rev. B 5, 3144 (1972).CrossRefGoogle Scholar
  20. 20.
    E. Araújo, A.S. Pimenta, F.M.C. Feijó, R.V.O. Castro, M. Fasciotti, T.V.C. Monteiro, and K.M.G. Lima, J. Appl. Microbiol. 124, 85 (2017).CrossRefGoogle Scholar
  21. 21.
    T. de Keijser, E.J. Mittemeijer, and H.C.F. Rozendaal, J. Appl. Crystallogr. 16, 309 (1983).CrossRefGoogle Scholar
  22. 22.
    H. Rietveld, J. Appl. Crystallogr. 2, 65 (1969).CrossRefGoogle Scholar
  23. 23.
    D.H. Quiñones, A. Rey, P.M. Álvarez, F.J. BeltrÁn, and G. Li Puma, Appl. Catal. B Environ. 178, 74 (2015).CrossRefGoogle Scholar
  24. 24.
    A. Barmeh, M.R. Nilforoushan, and S. Otroj, Thin Solid Films 666, 137 (2018).CrossRefGoogle Scholar
  25. 25.
    K. Liu, T.A. Schmedake, and R. Tsu, Phys. Lett. A 372, 4517 (2008).CrossRefGoogle Scholar
  26. 26.
    P.C.S. Bezerra, R.P. Cavalcante, A. Garcia, H. Wender, M.A.U. Martines, G.A. Casagrande, J. Giménez, P. Marco, S.C. Oliveira, and A. Machulek Jr, J. Braz. Chem. Soc. 28, 1788 (2017).Google Scholar
  27. 27.
    M.B. Askari, Z.T. Banizi, S. Soltani, and M. Seifi, Optik 157, 230 (2018).CrossRefGoogle Scholar
  28. 28.
    K. Kalantari, M. Kalbasi, M. Sohrabi, and S.J. Royaee, Ceram. Int. 42, 14834 (2016).CrossRefGoogle Scholar
  29. 29.
    W.-K. Wang, J.-J. Chen, M. Gao, Y.-X. Huang, X. Zhang, and H.-Q. Yu, Appl. Catal. B 195, 69 (2016).CrossRefGoogle Scholar
  30. 30.
    D. Zhao, Y. Yu, C. Cao, J. Wang, E. Wang, and Y. Cao, Appl. Surf. Sci. 345, 67 (2015).CrossRefGoogle Scholar
  31. 31.
    D. Sánchez-Rodríguez, M.G. Méndez Medrano, H. Remita, and V. Escobar-Barrios, J. Environ. Chem. Eng. 6, 1601 (2018).CrossRefGoogle Scholar
  32. 32.
    C. Gautam, A.K. Yadav, V.K. Mishra, and K. Vikram, Open J. Inorg. Non-Metal Mater. 02, 8 (2012).Google Scholar
  33. 33.
    A. Li Bassi, D. Cattaneo, V. Russo, C.E. Bottani, E. Barborini, T. Mazza, P. Piseri, P. Milani, F.O. Ernst, K. Wegner, and S.E. Pratsinis, J. Appl. Phys. 98, 074305 (2005).CrossRefGoogle Scholar
  34. 34.
    H.C. Choi, Y.M. Jung, and S.B. Kim, Vib. Spectrosc. 37, 33 (2005).CrossRefGoogle Scholar
  35. 35.
    H.-W. Cho, K.-L. Liao, J.-S. Yang, and J.-J. Wu, Appl. Surf. Sci. 440, 125 (2018).CrossRefGoogle Scholar
  36. 36.
    M. Momose and Y. Furukawa, Mater. Sci. Semicond. Process. 39, 748 (2015).CrossRefGoogle Scholar
  37. 37.
    V.A. Volodin, V. Mortet, A. Taylor, Z. Remes, T.H. Stuchliková, and J. Stuchlik, Solid State Commun. 276, 33 (2018).CrossRefGoogle Scholar
  38. 38.
    L. Tolvaj, K. Mitsui, and D. Varga, Wood Sci. Technol. 45, 135 (2011).CrossRefGoogle Scholar
  39. 39.
    M. Wang, J. Han, P. Guo, M. Sun, Y. Zhang, Z. Tong, M. You, and C. Lv, J. Phys. Chem. Solids 113, 86 (2018).CrossRefGoogle Scholar
  40. 40.
    A. Sarkar, S. Ghosh, S. Chaudhuri, and A.K. Pal, Thin Solid Films 204, 255 (1991).CrossRefGoogle Scholar
  41. 41.
    D. Kohen, A. Vohra, R. Loo, W. Vandervorst, N. Bhargava, J. Margetis, and J. Tolle, J. Cryst. Growth 483, 285 (2018).CrossRefGoogle Scholar
  42. 42.
    N. Masahashi and M. Oku, Appl. Surf. Sci. 254, 7056 (2008).CrossRefGoogle Scholar
  43. 43.
    C. Zhang, Y. Liu, J. Zhou, W. Jin, and W. Chen, Dyes Pigm. 156, 213 (2018).CrossRefGoogle Scholar
  44. 44.
    J.A. Freitas, K. Doverspike, P.B. Klein, Y.L. Khong, and A.T. Collins, Diam. Relat. Mater. 3, 821 (1994).CrossRefGoogle Scholar
  45. 45.
    M.M. Momeni, M. Hakimian, and A. Kazempour, Ceram. Int. 41, 13692 (2015).CrossRefGoogle Scholar
  46. 46.
    L. Li, Y. Yang, X. Liu, R. Fan, Y. Shi, S. Li, L. Zhang, X. Fan, P. Tang, R. Xu, W. Zhang, Y. Wang, and L. Ma, Appl. Surf. Sci. 265, 36 (2013).CrossRefGoogle Scholar
  47. 47.
    M. Mittal, A. Gupta, and O.P. Pandey, Sol. Energy 165, 206 (2018).CrossRefGoogle Scholar
  48. 48.
    L.M.P. Garcia, M.T.S. Tavares, N.F. Andrade Neto, R.M. Nascimento, C.A. Paskocimas, E. Longo, M.R.D. Bomio, and F.V. Motta, J. Mater. Sci. Mater. Electron. 29, 6530 (2018).CrossRefGoogle Scholar
  49. 49.
    M. Zare, K. Namratha, K. Byrappa, D.M. Surendra, S. Yallappa, and B. Hungund, J. Mater. Sci. Technol. 34, 1035 (2018).CrossRefGoogle Scholar
  50. 50.
    T. Xia, M. Kovochich, M. Liong, L. Mädler, B. Gilbert, H. Shi, J.I. Yeh, J.I. Zink, and A.E. Nel, ACS Nano 2, 2121 (2008).CrossRefGoogle Scholar
  51. 51.
    J. Ma, A. Hui, J. Liu, and Y. Bao, Mater. Lett. 158, 420 (2015).CrossRefGoogle Scholar
  52. 52.
    A.V. Badarinath, K. Mallikarjuna Rao, C. Madhu Sudhana Chetty, S. Ramkanth, T.V.S. Rajan, and K. Gnanaprakash, Int. J. PharmTech Res. 2, 1276 (2010).Google Scholar
  53. 53.
    S.M. Dizaj, F. Lotfipour, M. Barzegar-Jalali, M.H. Zarrintan, and K. Adibkia, Mater. Sci. Eng. C 44, 278 (2014).CrossRefGoogle Scholar
  54. 54.
    Y. Xie, Y. He, P.L. Irwin, T. Jin, and X. Shi, Appl. Environ. Microbiol. 77, 2325 (2011).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • N. F. Andrade Neto
    • 1
    Email author
  • P. Zanatta
    • 2
  • L. E. Nascimento
    • 1
  • R. M. Nascimento
    • 1
  • M. R. D. Bomio
    • 1
  • F. V. Motta
    • 1
  1. 1.LSQM – Laboratory of Chemical Synthesis of Materials – Department of Materials EngineeringFederal University of Rio Grande do Norte – UFRNNatalBrazil
  2. 2.UDESCLagesBrazil

Personalised recommendations