Skip to main content
Log in

Validity limits of Kubelka–Munk theory for DRIFT spectra of photodegraded solid wood

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

The validity of the Kubelka–Munk (K-M) theory was investigated to determine the IR absorption spectra of wood based on diffuse reflection infrared Fourier transform (DRIFT) measurements taken on photodegraded samples. After analysing plenty of DRIFT spectra of wood and examining the shape of the K-M equation, it can be concluded that the measured K-M function can be used as an absorption spectrum if the values of the function are below 14 K-M units. Above this limit, the K-M theory, which was created for poorly absorbing materials, does not give the absorption of wood properly. If a matt aluminium plate is used as a background material and the values are between 14 and 40, absorption changes can be calculated after normalisation of the spectra. This normalising manipulation is only successful if there is an absorption peak close to the examined one which does not change its absorption during the photodegradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baldock JA, Smernik RJ (2002) Chemical composition and bioavailability of thermally altered Pinus resinosa (Red pine) wood. Org Geochem 33:1093–1109

    Article  CAS  Google Scholar 

  • Barta E, Papp G, Preklet E, Tolvaj L, Berkesi O, Nagy T, Szatmári S (2005) Changes of absorption in infrared spectra of softwood materials irradiated by UV-laser as a function of energy. Acta Silvatica et Lignaria Hungarica 1(1):83–91 (http://www.aslh.nyme.hu/)

    Google Scholar 

  • Berben SA, Rademacher JP, Sell LO, Easy DB (1987) Estimation of lignin in wood pulp by diffuse reflectance fourier-transform infrared spectroscopy. Tappi J 70:129–131

    CAS  Google Scholar 

  • Bouchard J, Douek M (1993) Structural and concentration effects on the diffuse reflectance FTIR spectra of cellulose, lignin and pulp. J Wood Chem Technol 13:481–499

    Article  CAS  Google Scholar 

  • Chang ST, Wu CL, Wang SY, Chang HT (1998) Influence of concentration and particle size on the DRIFT spectroscopy of wood. Taiwan J For Sci 13:1–18

    Google Scholar 

  • Craciun R, Kamdem PD (1997) XPS and FTIR applied to the study of waterborne copper naphthenate wood preservatives. Holzforschung 51:207–213

    Article  CAS  Google Scholar 

  • Cui W, Kamdem D, Rypstra T (2004) Diffuse reflectance infrared Fourier transform spectroscopy (DRIFT) and color changes of artificial weathered wood. Wood Fiber Sci 36:291–301

    CAS  Google Scholar 

  • Faix O, Böttcher JH (1992) The influence of particle size and concentration in transmission and diffuse reflectance spectroscopy of wood. Holz Roh Werkst 50:221–226

    Article  CAS  Google Scholar 

  • Faix O, Németh K (1988) Monitoring of wood photodegradation by DRIFT-spectroscopy. Holz Roh Werkst 46:112

    Article  Google Scholar 

  • Ferraz A, Baeza J, Rodriguez J, Freer J (2000) Estimating the chemical composition of biodegraded pine and eucalyptus wood by DRIFT spectroscopy and multivariate analysis. Bioresource Technol 74:201–212

    Article  CAS  Google Scholar 

  • Forsskåhl I, Janson J (1995) Sequential treatment of mechanical and chemimechanical pulps with light and heat. Part 2. FTIR and UV-VIS absorption-scattering spectra. Nord Pulp Pap Res J 7:48–54

    Article  Google Scholar 

  • Freer J, Ruiz J, Peredo MA, Rodriguez J, Baeza J (2003) Estimating the density and pulping yield of E-globulus wood by DRIFT-MIR spectroscopy and principal components regression (PCR). J Chilean Chem Soc 48:19–22

    CAS  Google Scholar 

  • Hembree DM, Smyrl HR (1989) Anomalous dispersion effects in diffuse reflectance infrared fourier transform spectroscopy: a study of optical geometries. Appl Spectrosc 43:267–274

    Article  CAS  Google Scholar 

  • Holmgren A, Bergström B, Gref R, Ericsson A (1999) Detection of pinosylvins in solid wood of scots pine using fourier transform raman and infrared spectroscopy. J Wood Chem Technol 19:139–150

    Article  CAS  Google Scholar 

  • Hon DNS, Feist WC (1986) Weathering characteristics of hardwood surfaces. Wood Sci Technol 20:169–183

    CAS  Google Scholar 

  • Hon DNS, Ifju G (1978) Measuring penetration of light into wood by detection of photo-induced free radicals. Wood Sci 11:118–127

    CAS  Google Scholar 

  • Horn BA, Qiu J, Owen NL, Feist WC (1994) FT-IR studies of weathering effects in western redcedar and southern pine. Appl Spectrosc 48:662–668

    Article  CAS  Google Scholar 

  • Jones HG, Heitner C (1973) Optical measurement of absorption and scattering properties of wood using the Kubelka-Munk equations. Pulp Pap Mag Can 74:T182–T186

    Google Scholar 

  • Kataoka Y, Kiguchi M (2001) Depth profiling of photo-induced degradation in wood by FT-IR microspectroscopy. J Wood Sci 47:325–327

    Article  CAS  Google Scholar 

  • Kataoka Y, Kiguchi M, Evans PD (2004) Photodegradation depth profile and penetration of light in Japanese cedar earlywood (Criptomeria japonica D. Don) exposed to artificial solar radiation. Surf Coatings Int Part B-coatings Trans 87(3):187–193

    Article  CAS  Google Scholar 

  • Kataoka Y, Kiguchi M, Fujiwara T, Evans PD (2005) The effects of within-species and between-species variation in wood density on the photodegradation depth profiles of sugi (Cryptomeria japonica) and hinoki (Chamaecyparis obtusa). J Wood Sci 51(5):531–536

    Article  Google Scholar 

  • Kataoka Y, Kiguchi M, Williams RS, Evans PD (2007) Violet light causes photodegradation of wood beyond the zone affected by ultraviolet radiation. Holzforschung 61(1):23–27

    Article  CAS  Google Scholar 

  • Kishino M, Nakano T (2004) Artificial weathering of tropical woods. Part 1: Changes in wettability. Holzforschung 58:552–557

    Article  CAS  Google Scholar 

  • Kosikova B, Tolvaj L (1998) Structural changes of lignin- polysaccharide complex during photodegradation of Populus grandis. Drev Vysk 43:37–46

    CAS  Google Scholar 

  • Kubelka PJ (1948) New contributions to the optics of intensely light-scattering materials. Part I. J Opt Soc Am 38:448–457

    Article  CAS  Google Scholar 

  • Kubelka PJ, Munk F (1931) Ein Beitrag zur Optik der Farbanstriche. Zeitschrift für Technische Physik 11a:593–601

    Google Scholar 

  • Michell AJ (1991) An anomalous effect in the DRIFT spectra of woods and papers. J Wood Chem Technol 11:33–40

    Article  CAS  Google Scholar 

  • Michell AJ, Nelson PJ, Chin CWJ (1989) Diffuse reflectance spectroscopic studies of the bleaching and yellowing of eucalyptus regnans cold soda pulp. Appita J 42:443–448

    CAS  Google Scholar 

  • Mitsui K, Tsuchikawa S (2005) Low atmospheric temperature dependence on photodegradation of wood. J Photochem Photobiol B: Biol 81:84–88

    Article  CAS  Google Scholar 

  • Mitsui K, Murata A, Tolvaj L (2003) Investigation of the change in the DRIFT spectra of light-irradiated wood with heat treatment. Holz Roh Werkst 61:82

    Article  CAS  Google Scholar 

  • Moore AK, Owen NL (2001) Infrared spectroscopic studies of solid wood. Appl Spectrosc Rev 36:65–86

    Article  CAS  Google Scholar 

  • Müller U, Rätzsch M, Schwanninger M, Steiner M, Zöbl H (2003) Yellowing and IR-changes of spruce wood as result of UV-irradiation. J Photochem Photobiol B: Biol 69:97–105

    Article  Google Scholar 

  • Nuopponen MH, Birch GM, Sykes RJ, Lee SJ, Stewart D (2006) Estimation of wood density and chemical composition by means of diffuse reflectance mid-infrared Fourier transform (DRIFT-MIR) spectroscopy. J Agric Food Chem 54:34–40

    Article  CAS  PubMed  Google Scholar 

  • Ohkoshi MJ (2002) FTIR-PAS study of light-induced changes in the surface of acetylated or polyethylene glycol-impregnated wood. J Wood Sci 48:394–401

    Article  CAS  Google Scholar 

  • Owen NL, Pawlak Z (1989) An infrared study of the effect of liquid ammonia on wood surfaces. J Mol Struct 198:435–449

    Article  CAS  Google Scholar 

  • Owen NL, Thomas DW (1989) Infrared studies of “Hard” and “Soft” woods. Appl Spectrosc 43:451–455

    Article  CAS  Google Scholar 

  • Pandey KK (1999) A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. J Appl Polym Sci 71:1969–1975

    Article  CAS  Google Scholar 

  • Pandey KK (2005) Study of the effect of photo-irradiation on the surface chemistry of wood. Polym Degr Stab 90:9–20

    Article  CAS  Google Scholar 

  • Pandey KK, Khali DP (1998) Accelerated weathering of wood surfaces modified by chromium trioxide. Holzforschung 52(5):467–471

    Article  CAS  Google Scholar 

  • Pandey KK, Theagarajan KS (1997) Analysis of wood surfaces and ground wood by diffuse reflectance (DRIFT) and photoacustic (PAS) Fourier transform infrared spectroscopic techniques. Holz Roh Werkst 55:383–390

    Article  CAS  Google Scholar 

  • Papp G, Barta E, Tolvaj L, Berkesi O, Nagy T, Szatmári S (2005) Changes in DRIFT spectra of wood irradiated by UV laser as a function of energy. J Photochem Photobiol A: Chem 173(2):137–142

    Article  CAS  Google Scholar 

  • Ristolainen M, Alén R, Malkavaara P, Pere J (2002) Reflectance FTIR microspectroscopy for studying effect of xylan removal on unbleached and bleached birch kraft pulp. Holzforschung 56(5):513–521

    Article  CAS  Google Scholar 

  • Shen J, Zhou JQ, Vazquez O (2000) Experimental study of optical scattering and fiber orientation determination of softwood and hardwood with different surface finishes. Appl Spectrosc 54:1793–1804

    Article  CAS  Google Scholar 

  • Stewart D, Wilson HM, Hendra PJ, Morrison IM (1995) Fourier-transform infrared and raman-spectroscopic study of biochemical and chemical treatments of oak wood (Quercus-Rubra) and barley (Hordeum-Vulgare) straw. J Agric Food Chem 43:2219–2225

    Article  CAS  Google Scholar 

  • Sudiyani Y, Imamura Y, Doi S, Yamauchi S (2003) Infrared spectroscopic investigations of weathering effects on the surface of tropical wood. J Wood Sci 49:86–92

    Article  Google Scholar 

  • Takei T, Hamajima M, Kamba N (1997) Fourier transform infrared spectroscopic analysis of the degradation of structural lumber in Horyi-ji temple. Mokuzai Gakkaishi 43:285–294

    CAS  Google Scholar 

  • Toivanen TJ, Alen R (2007) A.FTIR/PLS method for determining variations in the chemical composition of birch (Betula pendula/B-publescens) stem wood. Appita J 60:155–160

    CAS  Google Scholar 

  • Tolvaj L, Faix O (1995) Artifical ageing of wood monitored by DRIFT spectroscopy and CIE L*a*b* color measurements. I. Effect of UV light. Holzforschung 49:397–404

    Article  CAS  Google Scholar 

  • Tolvaj L, Mitsui K (2004) Surface preparation and direction dependence of DRIFT spectra of wood. Appl Spectrosc 58:1137–1140

    Article  CAS  PubMed  Google Scholar 

  • Tolvaj L, Mitsui K (2005) Light source dependence of the photodegradation of wood. J Wood Sci 51:468–473

    Article  CAS  Google Scholar 

  • Umemura K, Yamauchi H, Ito T, Shibata M, Kawai S (2008) Durability of isocyanate resin adhesives for wood V: changes of color and chemical structure in photodegradation. J Wood Sci 54:289–293

    Article  CAS  Google Scholar 

  • Vane CH (2003) Monitoring decay of black gum wood (Nyssa sylvatica) during growth of the shiitake mushroom (Lentinula edodes) using diffuse reflectance infrared spectroscopy. Appl Spectrosc 57:514–517

    Article  CAS  PubMed  Google Scholar 

  • Weiland JJ, Guyonnet R (2003) Study of chemical modifications and fungi degradation of thermally modified wood using DRIFT spectroscopy. Holz Roh Werkst 61:216–220

    CAS  Google Scholar 

  • Zanuttini M, Citroni M, Martinez MJ (1998) Application of diffuse reflectance infrared Fourier transform spectroscopy to the quantitative determination of acetyl groups in wood. Holzforschung 52:263–267

    Article  CAS  Google Scholar 

  • Zavarin E, Jones SJ, Cool LG (1990) Analysis of solid wood surfaces by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. J Wood Chem Technol 10:495–513

    Article  CAS  Google Scholar 

  • Zhang J, Kamdem DP (2000) FTIR characterization of cooper ethanilamine–wood interaction for wood preservation. Holzforschung 54(2):119–122

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Tolvaj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tolvaj, L., Mitsui, K. & Varga, D. Validity limits of Kubelka–Munk theory for DRIFT spectra of photodegraded solid wood. Wood Sci Technol 45, 135–146 (2011). https://doi.org/10.1007/s00226-010-0314-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-010-0314-x

Keywords

Navigation