The Use of Different Pulsed Electron Irradiation for the Formation of Radiation Defects in Silicon Crystals

  • H. N. Yeritsyan
  • A. A. Sahakyan
  • N. E. Grigoryan
  • V. V. Harutyunyan
  • B. A. Grigoryan
  • G. A. Amatuni
  • V. H. Petrosyan
  • A. A. Khachatryan
  • C. J. Rhodes
Article
  • 5 Downloads

Abstract

This paper reports the formation of structural defects in the lattice of silicon (n-Si) single crystals, as a result of irradiation by different intensities and pulses of electrons. The samples were studied by means of Hall effect measurements of electro-physical parameters (specifically the concentration of the main charge carriers) as a function of temperature and radiation dose. The role of the radiation current density (pulse height) is discussed, which gives rise to a peculiar behavior in the electrical-physical properties of n-Si. In particular, thermal processes are found not to develop, due to the ultrafast (pulse duration in the range 10−12–10−13s) nature of the incident radiation, which causes an almost “pure” energy interaction to occur between the radiation and the atoms within the crystal, and the formation of cluster defects. A scheme for the time-scale of the formation of these radiation defects is presented. From the dose and temperature dependences of the concentration of main charge carriers, the radiation defects introduction rates were determined.

Keywords

Silicon crystal irradiation electro-physical properties radiation defects pulse irradiation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    E.A. Carr, Nucl. Sci. NS 11, 12 (1964).CrossRefGoogle Scholar
  2. 2.
    E.A. Carr, Nucl. Sci. NS 12, 30 (1965).CrossRefGoogle Scholar
  3. 3.
    H.J. Stein, IEEE Trans. Rad. Defects. Conf. on Irrad. effects in Semiconductors. Toulouse, 7-11 March, 1967.Google Scholar
  4. 4.
    D.I. Vaisburd, in Intern. Conf. on Rad. Physics of Semiconductors and Related Materials, p. 198. Tbilisi, 1980.Google Scholar
  5. 5.
    Y. Condo, M. Hirati, and M. Ueda, J. Phys. Soc. Jpn 33, 151 (1972).CrossRefGoogle Scholar
  6. 6.
    P.S. Gwozdz and J.S. Koehler, Phys. Rev. 6, 4571 (1972).CrossRefGoogle Scholar
  7. 7.
    L.E. Garzeva, L.V. Levchuk, V.N. Mordkovich, and M.I. Starchik, Radiation defects in non-metallic Crystals,v.3, chapter 1, Kiev, Naukova Dumka”—edition, p. 284, 1971.Google Scholar
  8. 8.
    G.D. Watkins, Materials science and technology, Vol. 4/5, ed. R.W. Cahn, P. Haasen, and E.J. Kramer (Hoboken: Wiley, 2005), p. 105.Google Scholar
  9. 9.
    D.V. Gromov, V.N. Mordkovich, D.M. Pazhin, and P.K. Skorobogatov, Electron Techn Ser 2 Semiconduct Devices Issue 1, 19 (2011).Google Scholar
  10. 10.
    H.N. Yeritsyan, A.A. Sahakyan, N.E. Grigoryan, E.A. Hakhverdyan, V.V. Harutyunyan, V.A. Sahakyan, A.A. Khachatryan, B.A. Grigoryan, V.S. Avagyan, G.A. Amatuni, and A.S. Vardanyan, J. Mod. Phys. 7, 1413 (2016).  https://doi.org/10.4236/jmp.2016.712128.CrossRefGoogle Scholar
  11. 11.
    V.M. Lenchenko, Physical-Chemical Problems of Solid States (Siberia: Edition of Krasnoyarks University, 1975), p. 3.Google Scholar
  12. 12.
    V.S. Vavilov, and N.A. Ukhin, Radiation Effects in Semiconductors and Semiconductor Devices, Atom-edition (Moscow, 1969) p. 310.Google Scholar
  13. 13.
    R.F. Konopleva, and V.I. Ostroumov, The Interaction of Charged High Energy Particles with Silicon and Germanium. Atom-edition (Moscow, 1975) p. 127.Google Scholar
  14. 14.
    H.N. Yeritsyan, A.A. Sahakyan, S.K. Nikoghosyan, V.V. Harutyunyan, S. Ohanyan, and V.S. Avagyan. J. Spacecr. Rockets 48(1), 34 (2011). Publication of Amer. Inst. of Aeronautics and Astronautics (NASA).Google Scholar
  15. 15.
    H.N. Yeritsyan, A.A. Sahakyan, N.E. Grigoryan, V.V. Harutyunyan, V.M. Tsakanov, B.A. Grigoryan, A.S. Yeremyan, and G.A. Amatuni, J. Electron. Mater. (2016).  https://doi.org/10.1007/s11664-016-4975-6.Google Scholar
  16. 16.
    M.K. Sheinkman and A.I. Shik, Fizika i Tekhnika Poluprovodnikov (Russian) 10, 209 (1976).Google Scholar
  17. 17.
    P.G. Coleman, C.J. Edwardson, A.P. Knightsand, and R.M. Gwilliam, New J. Phys. 4, 025007 (2012).  https://doi.org/10.1088/1367-2630/14/2/025007.CrossRefGoogle Scholar
  18. 18.
    F. Hartmann, NIMA 666, 25 (2012).CrossRefGoogle Scholar
  19. 19.
    A. Scora, D. Grojo, and M. Sentis, J. Appl. Phys. 122, 045702 (2017).  https://doi.org/10.1063/1.4994307.CrossRefGoogle Scholar
  20. 20.
    K. Takakura, H. Ohyama, H. Murakawa, T. Yoshida, J.M. Rafi, R. Job, A. Ulyashin, E. Simoen, and C. Claeys, J. Appl. Phys. 27, 133–135 (2004).Google Scholar
  21. 21.
    E.G. Sieverts and J.W. Corbett, Solid State Commun. 43, 41 (1982).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • H. N. Yeritsyan
    • 1
  • A. A. Sahakyan
    • 1
  • N. E. Grigoryan
    • 1
  • V. V. Harutyunyan
    • 1
  • B. A. Grigoryan
    • 2
  • G. A. Amatuni
    • 2
  • V. H. Petrosyan
    • 2
  • A. A. Khachatryan
    • 3
  • C. J. Rhodes
    • 4
  1. 1.Department of Applied PhysicsYerevan Physics InstituteYerevanArmenia
  2. 2.CANDLE Synchrotron Research InstituteYerevanArmenia
  3. 3.National Institute of Measurements CJSCYerevanArmenia
  4. 4.Fresh-lands Environmental ActionsCavershamUK

Personalised recommendations