Skip to main content
Log in

The Role of Defects in the Resistive Switching Behavior of Ta2O5-TiO2-Based Metal–Insulator–Metal (MIM) Devices for Memory Applications

  • Topical Collection: 17th Conference on Defects (DRIP XVII)
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We describe the role of defects in the resistive switching behavior of metal–insulator–metal devices based on alternating Ta2O5 and TiO2 stacks. Ruthenium oxide (RuOx) and platinum (Pt) were used as bottom and top electrodes, respectively. Insulator stacks with thickness of 5 nm were fabricated by atomic layer deposition of alternating Ta2O5 and TiO2 thin films. Bipolar resistive switching behavior was obtained for Ta2O5-TiO2-Ta2O5 and TiO2-Ta2O5-TiO2 stacks, being mainly due to presence of oxygen vacancy defects. The best memristive response was obtained in the case of two TiO2 films embedding a monolayer of Ta2O5. Highly repeatable direct-current (DC)-voltage bipolar switching cycles were obtained. Small-signal admittance parameters also showed hysteretic behavior during a whole bipolar switching cycle. In the case of samples with three layers of similar thickness, when the transition from ON to OFF state (reset) occurred, the conductance abruptly increased and the susceptance decreased quickly for more negative voltages values. Such behavior was not observed when only one Ta2O5 monolayer was examined. These differences can be explained in terms of the charge transport mechanism occurring in the open conductive filaments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Beck, J.G. Bednorz, C. Gerber, C. Rossel, and D. Widmer, Appl. Phys. Lett. 77, 139 (2000).

    Article  Google Scholar 

  2. R. Waser and M. Aono, Nat. Mater. 6, 833 (2007).

    Article  Google Scholar 

  3. J.J. Yang, D.B. Strukov, and D.R. Stewart, Nat. Nanotechnol. 8, 13 (2013).

    Article  Google Scholar 

  4. E. Gale, Semicond. Sci. Technol. 29, 104004 (2014).

    Article  Google Scholar 

  5. H. Nili, S. Walia, S. Balendhran, D.B. Strukov, M. Bhaskaran, and S. Sriram, Adv. Funct. Mater. 24, 6741 (2014).

    Article  Google Scholar 

  6. C. Chen, Y.C. Yang, F. Zeng, and F. Pan, Appl. Phys. Lett. 97, 083502 (2010).

    Article  Google Scholar 

  7. Y.-T. Huang, C.-W. Huang, J.-Y. Chen, Y.-H. Ting, K.-C. Lu, Y.-L. Chueh, and W.-W. Wu, ACS Nano 8, 9457 (2014).

    Article  Google Scholar 

  8. R. Waser, R. Bruchhaus, and S. Menzel, Nanoelectronics and Information Technology. Advanced electronic materials and novel devices, ed. R. Waser and P. Grumberg (Weinheim: Wiley-VCH, 2012), p. 683.

    Google Scholar 

  9. J. Yoon, H. Choi, D. Lee, J.B. Park, J. Lee, D.J. Seong, Y. Ju, M. Chang, S. Jung, and H. Hwang, IEEE Electron Device Lett. 30, 457 (2009).

    Article  Google Scholar 

  10. M.H. Lin, M.C. Wu, C.Y. Huang, C.Y. Huang, C.H. Lin, and T.Y. Tseng, J. Phys. D Appl. Phys. 43, 295404 (2010).

    Article  Google Scholar 

  11. C.H. Cheng, A. Chin, and F.S. Yeh, IEEE Electron Device Lett. 31, 1020 (2010).

    Article  Google Scholar 

  12. M. Terai, Y. Sakotsubo, S. Kotsuji, and H. Hada, IEEE Electron Device Lett. 31, 204 (2010).

    Article  Google Scholar 

  13. M.J. Kim, I.G. Baek, Y.H. Ha, S.J. Baik, J.H. Kim, D.J. Seong, S.J. Kim, Y.H. Kwon, C.R. Lim, H.K. Park, D. Gilmer, P. Kirsch, R. Jammy, Y.G. Shin, S. Choi, and C. Chung, IEDM Tech. Dig. 2010, p444 (2010).

    Google Scholar 

  14. Y.L. Song, Y. Liu, Y.L. Wang, X.P. Tian, L.M. Yang, and Y.Y. Lin, IEEE Electron Device Lett. 32, 1439 (2011).

    Article  Google Scholar 

  15. T. Arroval, L. Aarik, R. Rammula, V. Kruusla, and J. Aarik, Thin Solid Films 600, 119 (2016).

    Article  Google Scholar 

  16. B. Karunagaran, K. Kim, D. Mangalaraj, J. Yi, and S. Velumani, Sol. Energy Mater. Sol. Cells 88, 199 (2005).

    Article  Google Scholar 

  17. O. Frank, M. Zukalova, B. Laskova, J. Kürti, J. Koltai, and L. Kavan, Phys. Chem. Chem. Phys. 14, 14567 (2012).

    Article  Google Scholar 

  18. S. Bhaskar, P.S. Dobal, S.B. Majumder, and R.S. Katiyar, J. Appl. Phys. 89, 2987 (2001).

    Article  Google Scholar 

  19. B. Hudec, A. Paskaleva, P. Jancovic, J. Dérer, J. Fedor, A. Rosová, E. Dobrocka, and K. Fröhlich, Thin Solid Films 563, 10 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Dueñas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dueñas, S., Castán, H., García, H. et al. The Role of Defects in the Resistive Switching Behavior of Ta2O5-TiO2-Based Metal–Insulator–Metal (MIM) Devices for Memory Applications. J. Electron. Mater. 47, 4938–4943 (2018). https://doi.org/10.1007/s11664-018-6105-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6105-0

Keywords

Navigation