Skip to main content
Log in

Fabrication and Characterization of TiO2 Thin Film–Nanorod-Based Hybrid Structures for Memristor Applications

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A hydrothermal process was used to grow titanium dioxide (TiO2) nanorods on p-type silicon substrates, and a dip-coating process was then used to fabricate TiO2 thin film–nanorod hybrid structures. The nanorod-like structures were obtained for processing temperatures of 160°C and 180°C. The thin films were dip-coated on the nanorods with a withdrawal speed of 1 cm/min. Afterwards, thin film–nanorod hybrid structures were annealed at 500°C for 1 h. Morphological characterization carried out by scanning electron microscopy (SEM) studies confirmed the formation of nanorods. XRD and Raman studies confirmed the presence of anatase and rutile phases of TiO2-based hybrid structures. The oxide charge density (Qox) and the interface charge density (Dit) of the hybrid structures were measured from the capacitance–voltage (C–V) plot. Qox and Dit were calculated as 2.29 × 1012 cm−2 and 0.89 × 1012 eV−1 cm−2, respectively, for a temperature of 180°C and growth time of 60 min. The resistive switching properties of TiO2-based hybrid structures showed a good on/off ratio, and hence the hybrid structure-based device can be considered a suitable element for memory devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Hu, T.W. Odom, and C.M. Lieber, Chemistry and Physics in one dimension: synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 32, 435 (1999).

    Article  CAS  Google Scholar 

  2. Z. Yuan and B. Su, Titanium oxide nanoribbons. Chem. Phys. Lett. 363, 362 (2002).

    Article  CAS  Google Scholar 

  3. S.J. Kwon, H.S. Song, H.B. Im, J.E. Nam, J.K. Kang, T.S. Hwang, and K.B. Yi, Preparationand characterization of rutile-anatase hybrid TiO2 thin film by hydrothermal synthesis. Clean Technol. 20, 306 (2015).

    Article  Google Scholar 

  4. S.S. Mali, C.S. Shim, H.K. Park, J. Heo, P.S. Patil, and C.K. Hong, Ultrathin atomic layer deposited TiO2 for surface passivation of hydrothermally grown 1D TiO2 nanorod arrays for efficient solid-state perovskite solar cells. Chem. Mater. 27, 1541 (2015).

    Article  CAS  Google Scholar 

  5. Y.R. Park and K.J. Kim, Structural and optical properties of rutile and anatase TiO2 thin films: effects of Co doping. Thin Solid Films 484, 34 (2005).

    Article  CAS  Google Scholar 

  6. N. Tripathy, S.P. Ghosh, and J.P. Kar, Transformation of sputtered calcium copper titanate thin film into nanorods by sequential annealing. Ceram. Int. 44, 4052 (2018).

    Article  CAS  Google Scholar 

  7. C. Zhang, Y. Yan, Y. Sheng Zhao, and J. Yao, Synthesis and applications of organic nanorods, nanowires and nanotubes. Annu. Rep. Prog. Chem. Sect. C 109, 211 (2013).

    Article  CAS  Google Scholar 

  8. S.J. Limmer, T.P. Chou, and G.Z. Cao, Electrophoretic deposition fundamentals and applications a study on the growth of TiO2 nanorods using sol electrophoresis. J. Mater. Sci. 9, 895 (2004).

    Article  Google Scholar 

  9. G. Cao, Growth of oxide nanorod arrays through sol electrophoretic deposition. J. Phys. Chem. B 108, 19921 (2004).

    Article  CAS  Google Scholar 

  10. F. Neri and E. Mininno, Memetic compact differential evolution for Cartesian robot control. IEEE Comput. Intell. Mag. 5, 54 (2010).

    Article  Google Scholar 

  11. J.S. Meena, S.M. Sze, U. Chand, and T.Y. Tseng, Overview of emerging nonvolatile memory technologies. Nanoscale Res. Lett. 9, 1 (2014).

    Article  Google Scholar 

  12. C. Jia, F. Wang, C. Jiang, J. Berakdar, and D. Xue, Electric tuning of magnetization dynamics and electric field-induced negative magnetic permeability in nanoscale composite multiferroics. Nat. Publ. Gr. 1, 1111 (2015).

    Google Scholar 

  13. I. Daniele, Resistive switching memories based on metal oxides: mechanisms, reliability and scaling. Semicond. Sci. Technol. 31, 63002 (2016).

    Article  Google Scholar 

  14. M. Shahsavari, Memristor technology and applications: an overview memristor technology and applications—an overview Mahyar Shahsavari. IEEE Electron Device Lett. 39, 500 (2018).

    Google Scholar 

  15. J.M. Song and J.S. Lee, Self-assembled nanostructured resistive switching memory devices fabricated by templated bottom-up growth. Sci. Rep. 6, 1 (2016).

    Google Scholar 

  16. S.S. Mali, C.A. Betty, P.S. Patil, and C.K. Hong, Synthesis of a nanostructured rutile TiO2 electron transporting layer: via an etching process for efficient perovskite solar cells: impact of the structural and crystalline properties of TiO2. J. Mater. Chem. A 5, 12340 (2017).

    Article  CAS  Google Scholar 

  17. C.Y. Lin, C.Y. Wu, C.Y. Wu, T.Y. Tseng, and C. Hu, Modified resistive switching behavior of ZrO2 memory films based on the interface layer formed by using Ti top electrode. J. Appl. Phys. 102, 1 (2007).

    Article  Google Scholar 

  18. W. Shen, R. Dittmann, U. Breuer, and R. Waser, Improved endurance behavior of resistive switching in (Ba, Sr) TiO3 thin films with W top electrode. Appl. Phys. Lett. 93, 222102 (2008).

    Article  Google Scholar 

  19. S.R. Mohapatra, T. Tsuruoka, T. Hasegawa, K. Terabe, and M. Aono, Flexible resistive switching memory using inkjet printing of a solid polymer electrolyte. AIP Adv. 2, 022144 (2012).

    Article  Google Scholar 

  20. R.G. Breckenridge and W.R. Hosler, Electrical properties of titanium dioxide semiconductors. Phys. Rev. 91, 793 (1953).

    Article  CAS  Google Scholar 

  21. B.M.S. Sander, M.J. Côtø, W. Gu, B.M. Kile, and C.P. Tripp, Template-assisted fabrication of dense, aligned arrays of titania nanotubes with well-controlled dimensions on substrates. Adv. Mater. 04469, 2052 (2004).

    Article  Google Scholar 

  22. B.B. Lakshmi, P.K. Dorhout, and C.R. Martin, Sol–gel template synthesis of semiconductor nanostructures. Chem. Mater. 4756, 857 (1997).

    Article  Google Scholar 

  23. A.S. Attar, S. Mirdamadi, F. Hajiesmaeilbaigi, and M.S. Ghamsari, Growth of TiO2 nanorods by sol–gel template process growth of TiO2 nanorods by sol–gel template process. J. Mater. Sci. Technol. 1, 611 (2007).

    Google Scholar 

  24. N. Prepared, L. Coating, and P.M. Templates, Nanotubes Prepared by Layer-by-Layer Coating, 1849 (2003).

  25. Y. Wu and P. Yang, Direct observation of vapor–liquid–solid nanowire growth. J. Am. Chem. Soc. 123, 3165 (2001).

    Article  CAS  Google Scholar 

  26. S.K. Pradhan, P.J. Reucroft, F. Yang, and A. Dozier, Growth of TiO2 nanorods by metalorganic chemical vapor deposition. J. Cryst. Growth 256, 83 (2003).

    Article  CAS  Google Scholar 

  27. M. Paulose, K. Shankar, S. Yoriya, H.E. Prakasam, O.K. Varghese, G.K. Mor, T.A. Latempa, A. Fitzgerald, U.V. Park, and V. Pennsyl, Anodic growth of highly ordered TiO2 nanotube arrays to 134 µm in length. J. Phys. Chem. B 110, 16179 (2006).

    Article  CAS  Google Scholar 

  28. J. Shi and X. Wang, Growth of rutile titanium dioxide nanowires by pulsed chemical vapor deposition. Cryst. Growth Des. 11, 949 (2011).

    Article  CAS  Google Scholar 

  29. J. Lee, D. Hong, S. Hong, and J. Young, Sensors and actuators B : chemical short communication A hydrogen gas sensor employing vertically aligned TiO2 nanotube arrays prepared by template-assisted method. Sens. Actuators B Chem. 160, 1494 (2011).

    Article  CAS  Google Scholar 

  30. M. Iraj, F.D. Nayeri, E. Asl-Soleimani, and K. Narimani, Controlled growth of vertically aligned TiO2 nanorod arrays using the improved hydrothermal method and their application to dye-sensitized solar cells. J. Alloys Compd. 659, 44 (2016).

    Article  CAS  Google Scholar 

  31. C. Tan and H. Zhang, Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials. Nat. Commun. 6, 1 (2015).

    Article  CAS  Google Scholar 

  32. V. Senthilkumar, A. Kathalingam, V. Kannan, K. Senthil, and J.K. Rhee, Reproducible resistive switching in hydrothermal processed TiO2 nanorod film for non-volatile memory applications, Sens. Actuators A Phys. 194, 135 (2013).

    Article  CAS  Google Scholar 

  33. F. Zhang, X. Gan, X. Li, L. Wu, X. Gao, R. Zheng, Y. He, X. Liu, and R. Yang, Realization of rectifying and resistive switching behaviors of TiO2 nanorod arrays for nonvolatile memory. Electrochem. Solid-State Lett. 14, 422 (2011).

    Article  Google Scholar 

  34. M. Xiao, K.P. Musselman, W.W. Duley, and Y.N. Zhou, Reliable and low-power multilevel resistive switching in TiO2 nanorod arrays structured with a TiOx seed layer. ACS Appl. Mater. Interfaces 9, 4808 (2017).

    Article  CAS  Google Scholar 

  35. A.C. Khot, N.D. Desai, K.V. Khot, M.M. Salunkhe, M.A. Chougule, T.M. Bhave, R.K. Kamat, K.P. Musselman, and T.D. Dongale, Bipolar resistive switching and memristive properties of hydrothermally synthesized TiO2 nanorod array: effect of growth temperature. Mater. Des. 151, 37 (2018).

    Article  CAS  Google Scholar 

  36. B. Sun, Y. Liu, F. Lou, and P. Chen, White-light-controlled resistive switching chearacteristics of TiO2/Cu2O composite nanorods array. Chem. Phys. 457, 28 (2015).

    Article  CAS  Google Scholar 

  37. S. Roy, N. Tripathy, D. Pradhan, P.K. Sahu, and J.P. Kar, Applied surface science electrical characteristics of dip coated TiO2 thin films with various withdrawal speeds for resistive switching applications. Appl. Surf. Sci. 449, 181 (2018).

    Article  CAS  Google Scholar 

  38. B. Mishra, P. Ghildiyal, S. Agarkar, and D. Khushalani, Synthetic precursor to vertical TiO2 nanowires. Mater. Res. Express 1, 025005 (2014).

    Article  CAS  Google Scholar 

  39. X. Meng, D. Shin, S.M. Yu, M. Park, C. Yang, J.H. Lee, and J. Yoo, Formation mechanism of rutile TiO2 rods on fluorine doped tin oxide glass. J. Nanosci. Nanotechnol. 14, 8839 (2014).

    Article  CAS  Google Scholar 

  40. A. Kumar, A.R. Madaria, and C. Zhou, Jp100491H.Pdf, 7787 (2010).

  41. V. Jordan, U. Javornik, J. Plavec, A. Podgornik, and A. Rečnik, Self-assembly of multilevel branched rutile-type TiO2 structures via oriented lateral and twin attachment. Sci. Rep. 6, 1 (2016).

    Article  Google Scholar 

  42. M. Torabi, M. Drahansky, M. Paridah, A. Moradbak, A. Mohamed, F. Abdulwahab taiwo Owolabi, M. Asniza, and S.H. Abdul Khalid, We Are IntechOpen, the World’ s Leading Publisher of Open Access Books Built by Scientists, for Scientists TOP 1%, Intech i, 13 (2016).

  43. A. Morais, C. Longo, J.R. Araujo, M. Barroso, J.R. Durrant, and A.F. Nogueira, Nanocrystalline anatase TiO2/reduced graphene oxide composite films as photoanodes for photoelectrochemical water splitting studies: the role of reduced graphene oxide. Phys. Chem. Chem. Phys. 18, 2608 (2016).

    Article  CAS  Google Scholar 

  44. H. Pan, X. Qiu, I.N. Ivanov, H.M. Meyer, W. Wang, W. Zhu, M.P. Paranthaman, Z. Zhang, G. Eres, and B. Gu, Fabrication and characterization of brookite-rich, visible light-active TiO2 films for water splitting. Appl. Catal. B Environ. 93, 90 (2009).

    Article  CAS  Google Scholar 

  45. C. Maheu, L. Cardenas, E. Puzenat, P. Afanasiev, and C. Geantet, UPS and uv spectroscopies combined to position the energy levels of TiO2 anatase and rutile nanopowders. Phys. Chem. Chem. Phys. 20, 25629 (2018).

    Article  CAS  Google Scholar 

  46. C.H. Huang, J.S. Huang, S.M. Lin, W.Y. Chang, J.H. He, and Y.L. Chueh, ZnO 1–x nanorod arrays/ZnO thin film bilayer structure: from homojunction diode and high-performance memristor to complementary 1D1R application. ACS Nano 6, 8407 (2012).

    Article  CAS  Google Scholar 

  47. P. Bamola, B. Singh, A. Bhoumik, M. Sharma, C. Dwivedi, M. Singh, G.K. Dalapati, and H. Sharma, Mixed-phase TiO2 nanotube-nanorod hybrid arrays for memory-based resistive switching devices. ACS Appl. Nano Mater. 3, 10591 (2020).

    Article  CAS  Google Scholar 

  48. N. Mullani, I. Ali, T.D. Dongale, G.H. Kim, B.J. Choi, M.A. Basit, and T.J. Park, Improved resistive switching behavior of multiwalled carbon nanotube/TiO2 nanorods composite film by increased oxygen vacancy reservoir. Mater. Sci. Semicond. Process. 108, 104907 (2020).

    Article  CAS  Google Scholar 

  49. D.S. Jeong, H. Schroeder, and R. Waser, Coexistence of bipolar and unipolar resistive switching behaviors in a Pt TiO2 Pt stack. Electrochem. Solid-State Lett. 10, 51 (2007).

    Article  Google Scholar 

  50. C.H. Huang, T.S. Chou, J.S. Huang, S.M. Lin, and Y.L. Chueh, Self-selecting resistive switching scheme using TiO2 nanorod arrays. Sci. Rep. 7, 1 (2017).

    Google Scholar 

  51. Y. Yu, C. Wang, C. Jiang, I. Abrahams, Z. Du, Q. Zhang, J. Sun, and X. Huang, Resistive switching behavior in memristors with TiO2 nanorod arrays of different dimensions. Appl. Surf. Sci. 485, 222 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Prof. Pitamber Mahanandia, NIT Rourkela for the resistive switching measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Kar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, S., Tripathy, N., Pradhan, D. et al. Fabrication and Characterization of TiO2 Thin Film–Nanorod-Based Hybrid Structures for Memristor Applications. J. Electron. Mater. 53, 347–355 (2024). https://doi.org/10.1007/s11664-023-10733-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10733-y

Keywords

Navigation