Skip to main content
Log in

Interconnected SnO2 Microsphere Films with Improved Ultraviolet Photodetector Properties

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Metal oxide nanostructure detectors must adsorb both oxygen molecules and incident light to achieve ultrahigh photogain. However, the oxygen adsorption and desorption process can prolong the photoresponse time of the photogain. Therefore, it is a challenge to fabricate such metal oxide nanostructures that have the ability to adsorb both oxygen molecules and incident light simultaneously to generate large amounts of carriers under light illumination, using a simple preparation method. In this work, self-connected core–shell SnO2 microspheres were prepared and used as a photodetector. The interconnected SnO2 device exhibited improved photoresponse properties with photocurrent of 15.4 μA at room temperature, representing a nearly 43-fold enhancement compared with traditional photodetectors. The underlying mechanism for this process was revealed by Hall mobility versus temperature and photocurrent versus power intensity characteristics. We found that conducting channels among the tightly interconnected microspheres are mainly responsible for the improved photocurrent response, providing effective paths for electron transport as well as available sites for charge carrier accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Zhou, Y.D. Gu, Y.F. Hu, W.J. Mai, P.H. Yeh, G. Bao, A.K. Sood, D.L. Polla, and Z.L. Wang, Appl. Phys. Lett. 94, 191103 (2009).

    Article  Google Scholar 

  2. T.Y. Wei, P.H. Yeh, S.Y. Lu, and Z.L. Wang, J. Am. Chem. Soc. 131, 17690 (2009).

    Article  Google Scholar 

  3. Y.Z. Jin, J.P. Wang, B.Q. Sun, J.C. Blakesley, and N.C. Greenham, Nano Lett. 8, 1649 (2008).

    Article  Google Scholar 

  4. J.D. Prades, R. Jimenez-Diaz, F. Hernandez-Ramirez, L. Fernandez-Romero, T. Andreu, A. Cirera, A. Romano-Rodriguez, A. Cornet, J.R. Morante, S. Barth, and S. Mathur, J. Phys. Chem. C 112, 14639 (2008).

    Article  Google Scholar 

  5. Y.G. Han, C.C. Fan, G. Wu, H.Z. Chen, and M. Wang, J. Phys. Chem. C 115, 13438 (2011).

    Article  Google Scholar 

  6. F. He, C. Zhang, D. Zhou, L. Cheng, T. Li, and G.X. Li, Dalton Trans. 43, 7599 (2014).

    Article  Google Scholar 

  7. M. Chen, L.F. Hu, J.X. Xu, M.Y. Liao, L.M. Wu, and X.S. Fang, Small 7, 2449 (2011).

    Google Scholar 

  8. P.A. Hu, Z.Z. Wen, L.F. Wang, P.H. Tan, and K. Xiao, ACS Nano 6, 5988 (2012).

    Google Scholar 

  9. Q.H. Li, T. Gao, and T.H. Wang, Appl. Phys. Lett. 86, 123117 (2005).

    Article  Google Scholar 

  10. J. Retamal, C.Y. Chen, D.H. Lien, M.S. Huang, C.A. Lin, C.P. Liu, and J.H. He, ACS Photonics 1, 354 (2014).

    Article  Google Scholar 

  11. Z.M. Jarzebski and J.P. Marton, J. Electrochem. Soc. 123, 199C (1976).

    Article  Google Scholar 

  12. C.H. Lin, R.S. Chen, T.T. Chen, H.Y. Chen, Y.F. Chen, K.H. Chen, and L.C. Chen, Appl. Phys. Lett. 93, 112115 (2008).

    Article  Google Scholar 

  13. J. Liang, X.Y. Yu, H. Zhou, H.B. Wu, S.J. Ding, and X.W. Lou, Angew. Chem. Int. Ed. 53, 12803 (2014).

    Article  Google Scholar 

  14. T.Y. Zhai, X.S. Fang, M.Y. Liao, X.J. Xu, H.B. Zeng, B. Yoshio, and D. Golberg, Sensors 9, 6504 (2009).

    Article  Google Scholar 

  15. J.P. Zou, Q. Zhang, K. Huang, and N. Marzari, J. Phys. Chem. C 114, 10725 (2010).

    Article  Google Scholar 

  16. S.M. Peng, Y.K. Su, L.W. Ji, S.J. Young, C.Z. Wu, C.N. Tsai, W.C. Chao, and W.B. Cheng, IEEE Sensors J. 11, 1173 (2011).

    Article  Google Scholar 

  17. W. Tian, C. Zhang, T.Y. Zhai, S.L. Li, X. Wang, M.Y. Liao, K. Tsukagoshi, D. Golberg, and Y. Bando, Chem. Commun. 49, 3739 (2013).

    Article  Google Scholar 

  18. L.B. Luo, F.X. Liang, and J.S. Jie, Nanotechnology 22, 485701 (2011).

    Article  Google Scholar 

  19. S.S. Lin, Y.S. Tsai, and K.R. Bai, Appl. Surf. Sci. 380, 203 (2016).

    Article  Google Scholar 

  20. A. Wong, X.X. Wang, and J.F. Liu, J. Appl. Phys. 117, 103109 (2015).

    Article  Google Scholar 

  21. J. Heo, A. Hock, and R. Gordon, Chem. Mater. 22, 4964 (2010).

    Article  Google Scholar 

  22. C. Sun, N. Mathews, M.R. Zheng, C.H. Sow, L.H. Wong, and S.G. Mhaisalkar, J. Phys. Chem. C 114, 1331 (2010).

    Article  Google Scholar 

  23. S.P. Chang, S.J. Chang, Y.Z. Chiou, C.Y. Lu, T.K. Lin, Y.C. Lin, C.F. Kuo, and H.M. Chang, Sens. Actuators A 140, 60 (2007).

    Article  Google Scholar 

  24. M. Rajabi, R.S. Dariani, and A.I. Zad, Actuators A 180, 11 (2012).

    Article  Google Scholar 

  25. H. Chen, L.F. Hu, X.S. Fang, and L.M. Wu, Adv. Funct. Mater. 22, 1229 (2012).

    Article  Google Scholar 

  26. N. Nasiri, R. Bo, F. Wang, L. Fu, and A. Tricoli, Adv. Mater. 27, 4336 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support of this work by the National Key Research and Development Program of China (2017YFB0403101), National Natural Science Foundation of China (Nos. 61474096 and 61604127), Natural Science Foundation of Jiangsu Province (No. BK20150453), Natural Science Foundation of the Higher Education Institutions of Jiangsu Province, China (No. 14KJB510036), and Doctoral Program of Jiangsu Province (No. 1501144B).

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianghua Zeng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1713 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, W., Li, W., Zeng, X. et al. Interconnected SnO2 Microsphere Films with Improved Ultraviolet Photodetector Properties. J. Electron. Mater. 46, 6669–6676 (2017). https://doi.org/10.1007/s11664-017-5711-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5711-6

Keywords

Navigation