Advertisement

Scalable Ultrasound-Assisted Casting of Ultra-large 2219 Al Alloy Ingots

  • Zhilin Liu
  • Ruiqing Li
  • Ripeng Jiang
  • Lihua Zhang
  • Xiaoqian Li
Communication
  • 13 Downloads

Abstract

A scalable ultrasound-assisted direct-chill casting technique was used to manufacture ultra-large 2219 Al alloy ingots (1250 mm in diameter; 2700 mm in net length). Following industrial ultrasonic casting experiments, three fundamental aspects of the resulting alloy were investigated: the microstructural refinement, the macro- and microsegregation mediation at different length scales, and the modification of eutectic skeletons and intermetallic compounds. This work presents new insights regarding the manufacture of ultra-large metallic ingots for special industrial applications.

Graphical Abstract

Notes

This project is supported by National Natural Science Foundation of China (NSFC) through Grant No. 51605496, 51475480 and 51575539. X. Li acknowledges the funding support from National Natural Science Foundation of China (NSFC) with No. U1637601. R. Li thanks support from the State Key Laboratory of High Performance Complex Manufacturing through No. ZZYJKT2017-01. This research was also supported by Innovation Driven Program of Central South University (Grant No. 2019CX006). Experimental assistance obtained from all the MPhil/PhD students and technicians at Central South University who may leave or stay at professor Xiaoqian Li’s group is sincerely acknowledged.

References

  1. 1.
    [1] G.I. Eskin: Ultrason. Sonochem., 2001, vol. 8, pp. 319-25.CrossRefGoogle Scholar
  2. 2.
    [2] Y. Tian, Z.L. Liu, X.Q. Li, L.H. Zhang, R.Q. Li, R.P. Jiang, and F. Dong: Ultrason. Sonochem., 2018, vol. 43, pp. 29-37.CrossRefGoogle Scholar
  3. 3.
    [3] R.Q. Li, Z.L. Liu, F. Dong, X.Q. Li, and P.H. Chen: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 3790-6.CrossRefGoogle Scholar
  4. 4.
    [4] G.I. Eskin: Z. Metallkd., 2002, vol. 93(6), pp. 502-7.CrossRefGoogle Scholar
  5. 5.
    [5] T.V. Atamanenko, D.G. Eskin, L. Zhang, and L. Katgerman: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 2056-66.CrossRefGoogle Scholar
  6. 6.
    [6] G.I. Eskin and D.G. Eskin: Ultrasonic treatment of light alloy melts, 2nd edition, CRC Press, Taylor & Francis Group, 2014.CrossRefGoogle Scholar
  7. 7.
    [7] O.V. Abramov: Ultrasonics, 1987, vol. 25(2), pp. 73-82.CrossRefGoogle Scholar
  8. 8.
    M. Qian, A. Ramirez, and A. Das: J. Cryst. Growth., 2009, vol. 311 (4), pp. 3708–15.Google Scholar
  9. 9.
    G. Wang, M.S. Dargusch, M. Qian, D.G. Eskin, and D.H. StJohn: J. Cryst. Growth., 2014, vol. 408, pp. 119–24Google Scholar
  10. 10.
    [10] F. Wang, I. Tzanakis, D. Eskin, J. Mi, and T. Connolley: Ultrason. Sonochem., 2017, vol. 39, pp. 66-76.CrossRefGoogle Scholar
  11. 11.
    [11] F. Wang, D. Eskin, J. Mi, C. Wang, B. Koe, A. King, C. Reinhard, and T. Connolley: Acta Mater., 2017, vol. 141, pp. 142-53.CrossRefGoogle Scholar
  12. 12.
    [12] H. Huang, D. Shu, J. Zeng, F. Bian, Y. Fu, J. Wang, and B. Sun: Scripta Mater., 2015, vol. 106, pp. 21-5.CrossRefGoogle Scholar
  13. 13.
    [13] D. Shu, B. Sun, J. Mi, and P.S. Grant: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 3755-66.CrossRefGoogle Scholar
  14. 14.
    [14] J.G. Jung, T.Y. Ahn, Y.H. Cho, S.H. Kim, and J.M. Lee: Acta Mater., 2018, vol. 144, pp. 31-40.CrossRefGoogle Scholar
  15. 15.
    [15] F. Wang, D. Eskin, J. Mi, T. Connolley, J. Lindsay, and M. Mounib: Acta Mater., 2016, vol. 116, 354-63.CrossRefGoogle Scholar
  16. 16.
    [16] R. Chen, D. Zheng, T. Ma, H. Ding, Y. Su, J. Guo, and H. Fu: Ultrason. Sonochem., 2017, vol. 38, pp. 120-33.CrossRefGoogle Scholar
  17. 17.
    [17] X. Zhang, J. Kang, S. Wang, J. Ma, and T. Huang: Ultrason. Sonochem., 2015, vol. 27, pp. 307-15.CrossRefGoogle Scholar
  18. 18.
    [18] X. Chen, F. Ning, J. Hou, Q. Le, and Y. Tang: Ultrason. Sonochem., 2018, vol. 40, pp. 433-41.CrossRefGoogle Scholar
  19. 19.
    [19] X. Yang, S. Wu, S. L Lü, L. Hao, and X. Fang: Ultrason. Sonochem., 2018, vol. 40, pp. 472-9.CrossRefGoogle Scholar
  20. 20.
    A. Ramirez, Ma Qian, B. Davis, T. Wilks, and D.H. StJohn: Scripta Mater., 2008, vol. 59, pp. 19–22.Google Scholar
  21. 21.
    [21] B. Nagasivamuni, G. Wang, D.H. StJohn, and M.S. Dargusch: J. Cryst. Growth., 2018, vol. 495, pp. 20-8.CrossRefGoogle Scholar
  22. 22.
    R.Q. Li, Z.L. Liu, F. Dong, X.Q. Li, and P.H. Chen: Adv. Eng. Mater., 2017, vol. 19 (2), pp. 1600375.Google Scholar
  23. 23.
    [23] F. Dong, X.Q. Li, L.H. Zhang, L.Y. Ma, and R.Q. Li: Ultrason. Sonochem. 2016, vol. 31, pp. 150-6.CrossRefGoogle Scholar
  24. 24.
    [24] D.G. Eskin, R. Nadella, and L. Katgerman: Acta Mater., 2008, vol. 56, pp. 1358-65.CrossRefGoogle Scholar
  25. 25.
    [25] R. Nadella, D.G. Eskin, Q. Du, and L. Katgerman: Prog. Mater. Sci., 2008, vol. 53, pp. 421-80.CrossRefGoogle Scholar
  26. 26.
    [26] D.G. Eskin, Q. Du, and L. Katgerman: Scripta Mater., 2006, vol. 55, pp. 715-8.CrossRefGoogle Scholar
  27. 27.
    [27] W. Kurz and D.J. Fisher: Fundamentals of solidification, 4th edition., Trans. Tech. Publications, Switzerland, 1998.Google Scholar
  28. 28.
    A. Chemin, D. Marques, L. Bisanha, A. deJ. Motheo, W.W.B. Filho, and C.O.F. Ruchert: Mater. Des., 2014, vol. 53, pp. 118–23.Google Scholar
  29. 29.
    [29] X.-M. Li and M.J. Starink: Mater. Sci. Technol., 2001, vol. 17(11), pp. 1324-8.CrossRefGoogle Scholar
  30. 30.
    [30] L. Zhang, D.G. Eskin, and L. Katgerman; J. Mater. Sci., 2011, vol. 46, pp. 5252-9.CrossRefGoogle Scholar
  31. 31.
    [31] T.V. Atamanenko, D.G. Eskin, M. Sluiter, and L. Katgerman: J. Alloys Compds., 2011, vol. 509, pp. 57-60.CrossRefGoogle Scholar
  32. 32.
    [32] Y. Osawa, S. Takamori, T. Kimura, K. Minagawa, and H. Kakisawa: Mater. Trans., 2007, vol. 48(9), pp. 2467-75.CrossRefGoogle Scholar
  33. 33.
    [33] A. Das and H.R. Kotadia: Mater. Chem. Phys., 2011, vol. 125, pp. 853-9.CrossRefGoogle Scholar
  34. 34.
    [34] H.R. Kotadia and A. Das: J. Alloys Compd., 2015, vol. 620, pp. 1-4.CrossRefGoogle Scholar
  35. 35.
    [35] D. G. Eskin, A. Jafari, and L. Katgerman: Mater. Sci. Technol., 2011, vol. 27(5), pp. 890-6.CrossRefGoogle Scholar
  36. 36.
    [36] H. Combeau, M. Založnik, S. Hans, and P.E. Richy: Metall. Mater. Trans. B, 2009, vol. 40(3), pp. 289-304.CrossRefGoogle Scholar
  37. 37.
    [37] A. Ludwig, M. Wu, and A. Kharicha: Metall. Mater. Trans. A, 2015, vol. 46(11), pp. 4854-67.CrossRefGoogle Scholar
  38. 38.
    [38] F. Wang, Z.L. Liu, D. Qiu, J.A. Taylor, M.A. Easton, and M.X. Zhang: Acta Mater. 2013, vol. 61(1), pp. 360-70.CrossRefGoogle Scholar
  39. 39.
    [39] R.P. Jiang, X.Q. Li, and M. Zhang: Met. Mater. Int., 2015, vol. 21(1), pp. 104-8.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical EngineeringCentral South UniversityChangshaP.R. China
  2. 2.IMDEA Materials InstituteGetafeSpain
  3. 3.Light Alloy Research InstituteCentral South UniversityChangshaP.R. China

Personalised recommendations