Skip to main content
Log in

Mathematical Modeling of Multipass Hot Deformation of Aluminum Alloy AA5083—Model Development and Validation

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Hot rolling, a critical step in the manufacturing of sheet products, influences the final sheet properties based on the microstructure evolution during this operation. A comprehensive mathematical model of the hot rolling process for aluminum alloys has been developed. This article outlines the development of a two-dimensional (2-D) mathematical model to simulate multipass hot rolling using the commercial finite element (FE) package, ABAQUS. Microstructure evolution during multipass rolling was modeled using a physically based approach to predict the stored energy and the resulting microstructure for an AA5083 aluminum alloy. The stored energy in the material between passes is quantified using a rule-of-mixtures approach based on the fraction of the material that is recrystallized. An extensive experimental program was undertaken to validate the model using Corus’ single-stand reversible rolling facility located in IJmuiden, The Netherlands. Overall, the model was able to simulate the thermomechanical history experienced during multipass hot rolling reasonably well based on comparison to temperature and rolling load measurements. The model was also able to predict the fraction recrystallized through the thickness of the strip reasonably well, but the grain size predictions were consistently low.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. ABAQUS is a trademark of ABAQUS, Inc., Providence, RI, USA.

Abbreviations

d 0 :

initial grain size, μm

d rex :

recrystallized grain size, μm

t :

time, s

\( \ifmmode\expandafter\dot\else\expandafter\.\fi{N} \) :

nucleation rate

\( \ifmmode\expandafter\dot\else\expandafter\.\fi{G} \) :

growth rate

Q :

activation energy, J mole−1

n :

Avrami exponent

T :

temperature °C, K

X :

position along the length of the strip, mm

Y :

position through the thickness of the strip, mm

X v :

fraction transformed, pct

ε :

strain

\( \ifmmode\expandafter\dot\else\expandafter\.\fi{\varepsilon } \) :

strain rate, s−1

R:

universal gas constant, J mole−1 °C−1

σ f :

frictional stress, Pa

ρ r :

random dislocation density, m−2

ρ g :

geometrical necessary dislocation density, m−2

ρ ι :

internal dislocation density, m−2

μ :

coefficient of friction

τ :

shear stress, Pa

G :

shear modulus, Pa

W :

temperature compensated time parameter, s

δ :

average subgrain size, m

θ :

average misorientation angle between subgrains, deg

B :

burgers vector, m

N v :

nucleation density, m−3

N PSN :

particle-stimulated nucleation, m−3

N C :

cube nucleation, m−3

N GB :

grain boundary nucleation, m−3

P D :

driving force, Pa

S V :

grain boundary area per unit volume, μm−1

δt :

time increment, s

δε :

strain increment

:

misorientation angle between subgrains increment, deg

:

average subgrain size increment, μm

r :

random dislocation density increment, m−2

d 1 :

grain length in the y direction, μm

d 2 :

grain width in the x direction, μm

Z :

Zener–Hollomon parameter, s−1

Subscripts and superscripts :

 

def:

deformation

deformed:

deformed

rex:

recrystallization

roll:

roll

entry:

entry

strip:

strip

interpass:

interpass

ss :

steady state

eff:

effective

i :

current pass

i–1:

previous pass

r :

random

G :

geometrical necessary

C :

critical

a :

annealing

0:

starting

References

  1. H.E. Vatne, T. Furu, R. Orsund, E. Nes: Acta Mater., 1996, vol. 44, pp. 4463–73

    Article  CAS  Google Scholar 

  2. X.J. Duan, T. Sheppard: Modell. Simul. Mater. Sci. Eng., 2002, vol. (10), pp. 363–80

    Article  CAS  Google Scholar 

  3. H. Ahmed, M.A. Wells, D.M. Maijer, B.J. Howes, M.R. van der Winden: Mater. Sci. Eng. A, 2005, vol. 390 (1–2), pp. 278–90

    Google Scholar 

  4. H.E. Vatne, K. Marthinsen, R. Orsund, E. Nes: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 4133–44

    Article  CAS  Google Scholar 

  5. G.C. Reyes and J. Beynon: in Hot Deformation of Aluminum Alloys, TMS, Warrendale, PA, 1991.

  6. K. Marthinsen, S. Abtahi, K. Sjolstad, B. Holmedal, E. Nes, A. Johansen, J.A. Saeter, T. Furu, O. Engler, Z.J. Lok, J. Talamantes-Silva, C. Allen, C. Liu: Aluminium, 2004, vol. 80 (6), pp. 729–38

    CAS  Google Scholar 

  7. T. Furu, K. Marthinsen, E. Nes: Mater. Sci. Technol., 1990, vol. 6, pp. 1093–1102

    CAS  Google Scholar 

  8. M.R. van der Winden: Ph.D. Thesis, Sheffield University, Sheffield, United Kingdom, 1999

  9. M.A. Wells: Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 1995

  10. VAI rolling technology report, private communication

  11. VAI hot band technology report, private communication

  12. X.J. Duan, T. Sheppard: Comput. Mater. Sci., 2003, vol. 27 (3), pp. 250–58

    Article  Google Scholar 

  13. H.E. Vatne: Ph.D. Thesis, Norwegian Institute of Technology, Trondheim, Norway, 1995

  14. H.E. Vatne, T. Furu, R. Orsund, E. Nes: Mater. Sci. Technol., 1996, vol. 12, pp. 201–10

    CAS  Google Scholar 

  15. J.P. Holman: Heat Transfer, McGraw-Hill, New York, NY, 1997.

    Google Scholar 

  16. M.A. Wells, D.M. Maijer, S. Jupp, G. Lockhart, M.R. van der Winden: Mater. Sci. Technol., 2003, vol. 19 (4), pp. 467–76

    Article  CAS  Google Scholar 

  17. H. Ahmed, M.A. Wells, D.M. Maijer, M.R. van der Winden: in Hot Deformation of Aluminum Alloys III, TMS, Warrendale, PA, 2003

    Google Scholar 

  18. C.M. Sellars, Q. Zhu: Mater. Sci. Eng. A, 2000, vol. 280, pp. 1–7

    Article  Google Scholar 

  19. C.M. Sellars and Q. Zhu: in Hot Deformation of Aluminum Alloys II, TMS, Warrendale, PA, 1998.

  20. H. Ahmed: Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 2005

  21. F.J. Humphreys, M. Hatherly: Recrystallization and Related Annealing Phenomena, Pergamon Press, New York, NY, 1996, p. 363

    Google Scholar 

  22. H. Ahmed, M.A. Wells, D.M. Maijer, M.R. van der Winden: Light Metals 2003, CIM, Vancouver, BC, Canada, 2003

    Google Scholar 

  23. Corus Research Development and Technology, Introduction to the Research Mill of Corus Research Development and Technology, 2000

  24. C.D. Henning and R. Parker: J. Heat Transfer, 1967, pp. 146–54

  25. K.D. Maglic, B.S. Marsicanin: High Temp.-High Press., 1973, vol. 5, pp. 105–10

    CAS  Google Scholar 

  26. S.P. Timothy, H.L. Yiu, J.M. Fine, R.A. Ricks: Mater. Sci. Technol., 1991, vol. 7 (3), pp. 255–61

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Corus for funding this research project as well as providing access to their experimental rolling mill. The useful discussions with Drs. C. Liu and A. Norman and the technical help of Messrs. J. Wörmann and J. Brussel, Corus RD&T, are gratefully acknowledged. The financial support of the Natural Sciences and Engineering Research Council of Canada (NSERC) in the form of a graduate scholarship is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ahmed.

Additional information

Manuscript submitted October 11, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmed, H., Wells, M., Maijer, D. et al. Mathematical Modeling of Multipass Hot Deformation of Aluminum Alloy AA5083—Model Development and Validation. Metall Mater Trans A 38, 922–935 (2007). https://doi.org/10.1007/s11661-007-9101-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-007-9101-1

Keywords

Navigation