Skip to main content
Log in

Hot Rolling of a Non-heat Treatable Aluminum Alloy: Thermo-Mechanical and Microstructure Evolution Model

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

A transient thermo-mechanically coupled Finite Element Method based model for single pass hot rolling of AA 5083 aluminum alloy is developed. The formulation is based on thermo-viscoplastic behavior expressed by the Perzyna constitutive equation and rolling under plane-strain conditions. The finite element model is integrated with a microstructural model where dynamic recrystallization through particle stimulated nucleation and static recrystallization is considered. The dynamic recrystallization model is an adoption of discontinuous dynamic recrystallization model while static recrystallization model is based on Avrami equation. The simulation results indicate that accurate estimates of constitutive behavior of the alloy, efficiency of conversion of plastic deformation to heat, and heat transfer at the roll/metal interface are critical for precise hot rolling model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Oh S-I, and Altan T, Metal Forming and the Finite-Element Method, Oxford University Press, Oxford (1989).

    Google Scholar 

  2. Zienkiewicz O C, and Taylor R L, The Finite Element Method, Vol. 1, McGraw-Hill, London (1989).

    Google Scholar 

  3. Hwang S, Joun M S, and Kang Y, J Manuf Sci Eng, 115 (1993) 290.

    Article  Google Scholar 

  4. Zienkiewicz O, Oñae E, and Heinrich J, Int J Numer Methods Eng 17 (10) (1981) 1497.

    Article  Google Scholar 

  5. Alberti N, Cannizzaro L, and Micari F, CIRP Ann Manuf Technol 39 (1990) 231.

    Article  Google Scholar 

  6. Montmitonnet P, Chenot J L, Bertrand-Corsini C, David C, Lung T, Buessler P, J Manuf Sci Eng 114 (1992) 336.

    Article  Google Scholar 

  7. Shah R K, Roshan H M D, Sastri V M K, and Padmanabhan K A Thermomechanical aspects of manufacturing and materials processing. Hemisphere Publishing Corp., New York, United States (1992).

  8. Wells M A, Maijer D M, Jupp S, Lockhart G, Van der Winden M R, Mater Sci Technol 19 (2003) 467.

    Article  Google Scholar 

  9. Ahmed H, Wells M A, Maijer D M, Howes B ., and Van Der Winden M R, Mater Sci Eng A 390 (2005) 278.

    Article  Google Scholar 

  10. Gottstein G, Integral Materials Modeling: Towards Physics-Based Through-Process Models, Wiley, New York (2007).

    Book  Google Scholar 

  11. Hirsch J, Virtual Fabrication of Aluminum Products: Microstructural Modeling in Industrial Aluminum Production, Wiley-VCH, Weinheim (2007).

    Google Scholar 

  12. Sherstnev P, Melzer C, and Sommitsch C, Int J Mech Sci 54 (2012) 12.

    Article  Google Scholar 

  13. Pietrzyk M, Kusiak J, Kuziak R, Madej Ł, Szeliga D, and Gołąb R, Metall Mater Trans A 45 (13) (2014) 5835.

    Article  Google Scholar 

  14. Bambach M and Seuren S, J Mater Process Technol 216 (2015) 95.

  15. De Pari L, and Misiolek W Z, Acta Mater 56 (20) (2008) 6174.

    Article  Google Scholar 

  16. Shahani A R, Setayeshi S, Nodamaie S A, Asadi M A, and Rezaie S, J Mater Process Technol 209 (2009) 1920.

    Article  Google Scholar 

  17. McQueen H J, Spigarelli S, Kassner M E, and Evangelista E, Hot Deformation and Processing of Aluminum alloys, CRC Press, Boca Raton (2011).

    Google Scholar 

  18. Montheillet F, and Jonas J, ASM Handb 22 (2009) 220.

    Google Scholar 

  19. Sandström R, and Lagneborg R, Acta Metall 23 (1975) 387.

    Article  Google Scholar 

  20. ANSYS V, 10.0 User’s Manual, ANSYS Inc, Canonsburg (2004).

    Google Scholar 

  21. Montmitonnet P, and Buessler P, ISIJ Int 31 (1991) 525.

    Article  Google Scholar 

  22. Chen B, Thomson P, and Choi S, J Mater Process Technol 30 (1992) 115.

    Article  Google Scholar 

  23. Timothy S P, Yiu H L, Fine J M, and Ricks R A, Mater Sci Technol 7 (1991) 255.

    Article  Google Scholar 

  24. Ahmed H, Wells M A, Maijer D M, Lockhart G, and Van der Winden M R, Metall Mater Trans A 38 (2007) 922.

    Article  Google Scholar 

  25. Pietrzyk M, Cser L, and Lenard J, Mathematical and Physical Simulation of the Properties of Hot Rolled Products, Elsevier, Amsterdam (1999).

    Google Scholar 

  26. Perzyna P, Adv Appl Mech 9 (1966) p 243.

    Article  Google Scholar 

  27. Devadas C, Samarasekera I, and Hawbolt E, Metall Trans A 22 (1991) 335.

    Article  Google Scholar 

  28. Fletcher J, and Beynon J, Ironmak Steelmak 23 (1996) 52.

    Google Scholar 

  29. Choquet P, Fabregue P, Giusti J, Chamont B, Pezant J N and Blanchet F, Mathematical Modelling of Hot Rolling of Steel, CIM, Montreal (1990) p 34.

    Google Scholar 

  30. Hlady C O, Brimacombe J K, Samarasekera I V, and Hawbolt E B, Metall Mater Trans B 26 (1995) 1019.

    Article  Google Scholar 

  31. Duan X, and Sheppard T, J Mater Process Technol 150 (2004) 100.

    Article  Google Scholar 

  32. Canas J, Picon R, Pariis F, Blazquez A, and Marin J C, Comput Struct 58 (1996) 59.

    Article  Google Scholar 

  33. Porter D A, Easterling K E, and Sherif M, Phase Transformations in Metals and Alloys, (Revised Reprint), CRC press, Boca Raton (2009).

    Google Scholar 

  34. Pietrzyk M, Metall Foundry Eng (Poland) 20 (1994) 429.

    Google Scholar 

  35. Davies C H, Scr Metall Mater 30 (1994) 349.

    Article  Google Scholar 

  36. Pietrzyk M, J Mater Process Technol 125 (2002) 53.

    Article  Google Scholar 

  37. Harlow D, Wei R, and Wang M, Metall Mater Trans A 37 (11) (2006) 3367.

    Article  Google Scholar 

  38. Kamikawa N, Huang X, Tsuji N, and Hansen N, Acta Mater 57 (14) (2009) 4198.

    Article  Google Scholar 

  39. Rollett A, Humphreys F J, Rohrer G S, and Hatherly M, Recrystallization and Related Annealing Phenomena, Elsevier, Amsterdam (2004).

    Google Scholar 

  40. Huang Y, and Humphreys F, Mater Chem Phys 132 (2012) 166.

    Article  Google Scholar 

  41. Hensel A, and Spittel T, Kraft-und Arbeitsbedarf bildsamer Formgebungsverfahren, Deutscher Verlag für Grundstoffindustrie Leipzig.

  42. Zhou M, and Clode M, Mech Mater 27 (1998) 63.

    Google Scholar 

  43. Hlady C O, Samarasekera I V, Hawbolt E B, and Brimacombe J K, Heat Transfer in The Hot Rolling of Aluminium Alloys, in Proceedings of International Symposium on Light Metals Processing and Applications: 32nd Conference of Metallurgists, Metallurgical Society of CIM Quebec City (1993).

  44. Chen W, Samarasekera I, and Hawbolt E, Metall Trans A, 24 (1993) 1307.

    Article  Google Scholar 

  45. Hodowany J, Ravichandran G, Rosakis A J, and Rosakis P, Exp Mech 40 (2000) 113.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. De.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nellippallil, A.B., De, P.S., Gupta, A. et al. Hot Rolling of a Non-heat Treatable Aluminum Alloy: Thermo-Mechanical and Microstructure Evolution Model. Trans Indian Inst Met 70, 1387–1398 (2017). https://doi.org/10.1007/s12666-016-0935-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-016-0935-3

Keywords

Navigation