Skip to main content
Log in

A new DIRECT-GLh algorithm for global optimization with hidden constraints

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In this paper, we consider the solution of global optimization problems involving hidden constraints. We present a novel deterministic derivative-free global optimization algorithm based on our recently introduced DIRECT-GL (Stripinis et al. in Optim Lett. 12(7):1699–1712, 2018). The new algorithm (DIRECT-GLh) incorporates two additional techniques for faster feasibility detection and solution improvement, especially when the solution lies on the border of the a priori unknown feasible region. The algorithm’s potential is demonstrated on 67 problems from the current release of DIRECTLib and 100 Emmental-type test problems. The numerical comparison reveals the proposed algorithm’s superiority to the considered DIRECT-type approaches for such problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bachoc, F., Helbert, C., Picheny, V.: Gaussian process optimization with failures: classification and convergence proof. J. Glob. Opt. 78(3), 483–506 (2020). https://doi.org/10.1007/s10898-020-00920-0

    Article  MathSciNet  MATH  Google Scholar 

  2. Bartholomew-Biggs, M.C., Parkhurst, S.C., Wilson, S.P.: Using DIRECT to solve an aircraft routing problem. Comput. Opt. Appl. 21(3), 311–323 (2002). https://doi.org/10.1023/A:1013729320435

    Article  MathSciNet  MATH  Google Scholar 

  3. Candelieri, A.: Sequential model based optimization of partially defined functions under unknown constraints. J. Glob. Opt. (2019). https://doi.org/10.1007/s10898-019-00860-4

  4. Carter, R.G., Gablonsky, J.M., Patrick, A., Kelley, C.T., Eslinger, O.J.: Algorithms for noisy problems in gas transmission pipeline optimization. Opt. Eng. 2(2), 139–157 (2001). https://doi.org/10.1023/A:1013123110266

    Article  MathSciNet  MATH  Google Scholar 

  5. Characklis, G.W., Kirsch, B.R., Ramsey, J., Dillard, K.E., Kelley, C.T.: Developing portfolios of water supply transfers. Water Resour. Res. (2006). https://doi.org/10.1029/2005WR004424

  6. Chen, X., Kelley, C.T.: Optimization with hidden constraints and embedded Monte Carlo computations. Opt. Eng. 17(1), 157–175 (2016). https://doi.org/10.1007/s11081-015-9302-1

    Article  MathSciNet  MATH  Google Scholar 

  7. Choi, T.D., Eslinger, O.J., Kelley, C.T., David, J.W., Etheridge, M.: Optimization of Automotive Valve Train Components with Implicit Filtering. Opt. Eng. 1(1), 9–27 (2000). https://doi.org/10.1023/A:1010071821464

    Article  MATH  Google Scholar 

  8. Costa, M.F.P., Rocha, A.M.A.C., Fernandes, E.M.G.P.: Filter-based direct method for constrained global optimization. J. Glob. Opt. 71(3), 517–536 (2018). https://doi.org/10.1007/s10898-017-0596-8

    Article  MathSciNet  MATH  Google Scholar 

  9. David, J.W., Kelley, C.T., Cheng, C.Y.: Use of an implicit filtering algorithm for mechanical system parameter identification. SAE Technical Papers (1996). https://doi.org/10.4271/960358

  10. Di Pillo, G., Liuzzi, G., Lucidi, S., Piccialli, V., Rinaldi, F.: A DIRECT-type approach for derivative-free constrained global optimization. Comput. Opt. Appl. 65(2), 361–397 (2016). https://doi.org/10.1007/s10589-016-9876-3

    Article  MathSciNet  MATH  Google Scholar 

  11. Di Pillo, G., Lucidi, S., Rinaldi, F.: An approach to constrained global optimization based on exact penalty functions. J. Opt. Theory Appl. 54(2), 251–260 (2010). https://doi.org/10.1007/s10898-010-9582-0

    Article  MathSciNet  MATH  Google Scholar 

  12. Di Serafino, D., Liuzzi, G., Piccialli, V., Riccio, F., Toraldo, G.: A modified DIviding RECTangles algorithm for a problem in astrophysics. J. Opt. Theory Appl. 151(1), 175–190 (2011). https://doi.org/10.1007/s10957-011-9856-9

    Article  MathSciNet  MATH  Google Scholar 

  13. Donskoi, V.I.: Partially defined optimization problems: An approach to a solution that is based on pattern recognition theory. J. Soviet Mat. (1993). https://doi.org/10.1007/BF01097516

  14. Finkel, D.E.: Global optimization with the Direct algorithm. Ph.D. thesis, North Carolina State University (2005)

  15. Finkel, D.E., Kelley, C.T.: Additive scaling and the DIRECT algorithm. J. Glob. Opt. 36(4), 597–608 (2006). https://doi.org/10.1007/s10898-006-9029-9

    Article  MathSciNet  MATH  Google Scholar 

  16. Fletcher, R.: Practical Methods of Optimation, 2nd edn. John and Sons Chichester, United Kingdom (1987)

    Google Scholar 

  17. Forrester, A.I.J., Keane, A.J.: Recent advances in surrogate-based optimization. Prog. Aerospace Sci. 45(1), 50–79 (2009). https://doi.org/10.1016/j.paerosci.2008.11.001

    Article  Google Scholar 

  18. Gablonsky, J.M.: Modifications of the DIRECT algorithm. Ph.D. thesis, North Carolina State University (2001)

  19. Gablonsky, J.M., Kelley, C.T.: A locally-biased form of the DIRECT algorithm. J. Glob. Opt. 21(1), 27–37 (2001). https://doi.org/10.1023/A:1017930332101

    Article  MathSciNet  MATH  Google Scholar 

  20. Gorodetsky, S.: Diagonal Generalizaton of the DIRECT Method for Problems with Constraints. Autom. Remote Contr. 81(8), 1431–1449 (2020). https://doi.org/10.1134/S0005117920080068

    Article  MATH  Google Scholar 

  21. Grishagin, V.A.: Operating characteristics of some global search algorithms. In: Problems of Stochastic Search, vol. 7, pp. 198–206. Zinatne, Riga (1978). In Russian

  22. Jones, D.R.: The Direct global optimization algorithm. In: Floudas, C.A., Pardalos, P.M. (eds.) The Encyclopedia of Optimization, pp. 431–440. Kluwer Academic Publishers, Dordrect (2001)

    Chapter  Google Scholar 

  23. Jones, D.R., Martins, J.R.R.A.: The DIRECT algorithm: 25 years later. J. Glob. Opt. (2020). https://doi.org/10.1007/s10898-020-00952-6

  24. Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the Lipschitz constant. J. Opt. Theory Appl. 79(1), 157–181 (1993). https://doi.org/10.1007/BF00941892

    Article  MathSciNet  MATH  Google Scholar 

  25. Kirsch, B.R., Characklis, G.W., Dillard, K.E., Kelley, C.T.: More efficient optimization of long-term water supply portfolios. Water Resources Research (2009). https://doi.org/10.1029/2008WR007018

  26. Le Digabel, S., Wild, S.M.: A Taxonomy of Constraints in Simulation-Based Optimization. arXiv e-prints arXiv:1505.07881 (2015)

  27. Liu, H., Xu, S., Chen, X., Wang, X., Ma, Q.: Constrained global optimization via a direct-type constraint-handling technique and an adaptive metamodeling strategy. Struct. Multidis. Opt. 55(1), 155–177 (2017). https://doi.org/10.1007/s00158-016-1482-6

    Article  MathSciNet  Google Scholar 

  28. Liu, Q., Zeng, J., Yang, G.: MrDIRECT: a multilevel robust DIRECT algorithm for global optimization problems. J. Glob. Opt. 62(2), 205–227 (2015). https://doi.org/10.1007/s10898-014-0241-8

    Article  MathSciNet  MATH  Google Scholar 

  29. Liuzzi, G., Lucidi, S., Piccialli, V.: A DIRECT-based approach exploiting local minimizations for the solution of large-scale global optimization problems. Comput. Opt. Appl. 45, 353–375 (2010). https://doi.org/10.1007/s10589-008-9217-2

    Article  MathSciNet  MATH  Google Scholar 

  30. Liuzzi, G., Lucidi, S., Piccialli, V.: A partition-based global optimization algorithm. J. Glob. Opt. 48(1), 113–128 (2010). https://doi.org/10.1007/s10898-009-9515-y

    Article  MathSciNet  MATH  Google Scholar 

  31. Mockus, J., Paulavičius, R., Rusakevičius, D., Šešok, D., Žilinskas, J.: Application of Reduced-set Pareto-Lipschitzian Optimization to truss optimization. J. Glob. Opt. 67(1–2), 425–450 (2017). https://doi.org/10.1007/s10898-015-0364-6

    Article  MathSciNet  MATH  Google Scholar 

  32. Na, J., Lim, Y., Han, C.: A modified DIRECT algorithm for hidden constraints in an LNG process optimization. Energy p. 488–500 (2017). https://doi.org/10.1016/j.energy.2017.03.047

  33. Paulavičius, R., Chiter, L., Žilinskas, J.: Global optimization based on bisection of rectangles, function values at diagonals, and a set of Lipschitz constants. J. Glob. Opt. 71(1), 5–20 (2018). https://doi.org/10.1007/s10898-016-0485-6

    Article  MathSciNet  MATH  Google Scholar 

  34. Paulavičius, R., Sergeyev, Y.D., Kvasov, D.E., Žilinskas, J.: Globally-biased DISIMPL algorithm for expensive global optimization. J. Glob. Opt. 59(2–3), 545–567 (2014). https://doi.org/10.1007/s10898-014-0180-4

    Article  MathSciNet  MATH  Google Scholar 

  35. Paulavičius, R., Sergeyev, Y.D., Kvasov, D.E., Žilinskas, J.: Globally-biased BIRECT algorithm with local accelerators for expensive global optimization. Expert Syst. Appl. 144, 113052 (2020). https://doi.org/10.1016/j.eswa.2019.113052

    Article  Google Scholar 

  36. Paulavičius, R., Žilinskas, J.: Analysis of different norms and corresponding Lipschitz constants for global optimization. Technol. Econ. Develop. Econ. 36(4), 383–387 (2006). https://doi.org/10.1080/13928619.2006.9637758

    Article  Google Scholar 

  37. Paulavičius, R., Žilinskas, J.: Analysis of different norms and corresponding Lipschitz constants for global optimization in multidimensional case. Inf. Technol. Cont. 36(4), 383–387 (2007)

    Google Scholar 

  38. Paulavičius, R., Žilinskas, J.: Simplicial Lipschitz optimization without the Lipschitz constant. J. Glob. Opt. 59(1), 23–40 (2013). https://doi.org/10.1007/s10898-013-0089-3

    Article  MathSciNet  MATH  Google Scholar 

  39. Paulavičius, R., Žilinskas, J.: Simplicial Global Optimization. SpringerBriefs in Optimization. Springer berlin (2014). https://doi.org/10.1007/978-1-4614-9093-7

    Article  MATH  Google Scholar 

  40. Paulavičius, R., Žilinskas, J.: Advantages of simplicial partitioning for Lipschitz optimization problems with linear constraints. Opt. Let. 10(2), 237–246 (2016). https://doi.org/10.1007/s11590-014-0772-4

    Article  MathSciNet  MATH  Google Scholar 

  41. Pintér, J.D.: Global optimization in action: continuous and Lipschitz optimization: algorithms, implementations and applications, Nonconvex Optimization and Its Applications, vol. 6. Springer US, Berlin (1996). https://doi.org/10.1007/978-1-4757-2502-5

    Book  MATH  Google Scholar 

  42. Piyavskii, S.A.: An algorithm for finding the absolute minimum of a function. Theory Opt. Solut. 2, 13–24 (1967). https://doi.org/10.1016/0041-5553(72)90115-2. (In Russian)

    Article  MathSciNet  Google Scholar 

  43. Rios, L.M., Sahinidis, N.V.: Derivative-free optimization: a review of algorithms and comparison of software implementations. J. Glob. Opt. 56(3), 1247–1293 (2007). https://doi.org/10.1007/s10898-012-9951-y

    Article  MathSciNet  MATH  Google Scholar 

  44. Rudenko, L.I.: Objective functional approximation in a partially defined optimization problem. J. Mat. Sci. 72(5), 3359–3363 (1994). https://doi.org/10.1007/BF01261697

    Article  MathSciNet  Google Scholar 

  45. Sergeyev, Y.D.: On convergence of divide the best global optimization algorithms. Optimization 44(3), 303–325 (1998)

    Article  MathSciNet  Google Scholar 

  46. Sergeyev, Y.D., Candelieri, A., Kvasov, D.E., Perego, R.: Safe global optimization of expensive noisy black-box functions in the \(\delta \)-Lipschitz framework. Soft Computing 24(23), 17715–17735 (2020). https://doi.org/10.1007/s00500-020-05030-3

    Article  Google Scholar 

  47. Sergeyev, Y.D., Kvasov, D.E.: Global search based on diagonal partitions and a set of Lipschitz constants. SIAM J. Opt. 16(3), 910–937 (2006). https://doi.org/10.1137/040621132

    Article  MathSciNet  MATH  Google Scholar 

  48. Sergeyev, Y.D., Kvasov, D.E.: Lipschitz global optimization. In: Cochran, J.J., Cox, L.A., Keskinocak, P., Kharoufeh, J.P., Smith, J.C. (eds.) Wiley Encyclopedia of Operations Research and Management Science (in 8 volumes), vol. 4, pp. 2812–2828. Wiley, New York (2011)

    Google Scholar 

  49. Sergeyev, Y.D., Kvasov, D.E.: Deterministic Global Optimization: An Introduction to the Diagonal Approach. SpringerBriefs in Optimization. Springer (2017). https://doi.org/10.1007/978-1-4939-7199-2

  50. Sergeyev, Y.D., Kvasov, D.E., Khalaf, F.M.H.: A one-dimensional local tuning algorithm for solving GO problems with partially defined constraints. Opt. Let. 1(1), 85–99 (2007). https://doi.org/10.1007/s11590-006-0015-4

    Article  MathSciNet  MATH  Google Scholar 

  51. Sergeyev, Y.D., Kvasov, D.E., Mukhametzhanov, M.S.: Emmental-Type GKLS-Based Multiextremal Smooth Test Problems with Non-linear Constraints. In: Battiti, R., Kvasov, D.E., Sergeyev, Y.D. (eds.) Learn. Intel. Opt., pp. 383–388. Springer International Publishing, Cham (2017)

    Google Scholar 

  52. Sergeyev, Y.D., Pugliese, P., Famularo, D.: Index information algorithm with local tuning for solving multidimensional global optimization problems with multiextremal constraints. Mat. Prog. 96(3), 489–512 (2003). https://doi.org/10.1007/s10107-003-0372-z

    Article  MathSciNet  MATH  Google Scholar 

  53. Shan, S., Wang, G.G.: Metamodeling for high dimensional simulation-based design problems. J. Mech. Des. 132(5), 051009 (2010). https://doi.org/10.1115/1.4001597

    Article  Google Scholar 

  54. Shan, S., Wang, G.G.: Survey of modeling and optimization strategies to solve high-dimensional design problems with computationally-expensive black-box functions. Struct. Multidis. Opt. 41(2), 219–241 (2010). https://doi.org/10.1007/s00158-009-0420-2

    Article  MathSciNet  MATH  Google Scholar 

  55. Shubert, B.O.: A sequential method seeking the global maximum of a function. SIAM J. Num. Analy. 9, 379–388 (1972). https://doi.org/10.1137/0709036

    Article  MathSciNet  MATH  Google Scholar 

  56. Stoneking, D.E., Bilbro, G.L., Gilmore, P.A., Trew, R.J., Kelley, C.T.: Yield optimization using a gaas process simulator coupled to a physical device model. IEEE Trans. Microwave Theory Techniq. 40(7), 1353–1363 (1992). https://doi.org/10.1109/22.146318

    Article  Google Scholar 

  57. Stripinis, L., Paulavičius, R., Žilinskas, J.: Improved scheme for selection of potentially optimal hyper-rectangles in DIRECT. Opt. Let. 12(7), 1699–1712 (2018). https://doi.org/10.1007/s11590-017-1228-4

    Article  MathSciNet  MATH  Google Scholar 

  58. Stripinis, L., Paulavičius, R., Žilinskas, J.: Penalty functions and two-step selection procedure based DIRECT-type algorithm for constrained global optimization. Struct. Multidis. Opt. 59(6), 2155–2175 (2019). https://doi.org/10.1007/s00158-018-2181-2

    Article  MathSciNet  Google Scholar 

  59. Stripinis, L., Paulavičius, R.: DIRECTLib – a library of global optimization problems for DIRECT-type methods, v1.2 (2020). https://doi.org/10.5281/zenodo.3948890

  60. Stripinis, L., Žilinskas, J., Casado, L.G., Paulavičius, R.: On MATLAB experience in accelerating DIRECT-GLce algorithm for constrained global optimization through dynamic data structures and parallelization. Appl.Mat. Comput. 390, 125596 (2021). https://doi.org/10.1016/j.amc.2020.125596

    Article  MathSciNet  MATH  Google Scholar 

  61. Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-Convex Constraints: Sequential and Parallel Algorithms. Kluwer Academic Publishers, Dordrecht (2000)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Remigijus Paulavičius.

Ethics declarations

Data statement

Data underlying this article can be accessed on Zenodo at https://dx.doi.org/10.5281/zenodo.1218980, and used under the Creative Commons Attribution license.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stripinis, L., Paulavičius, R. A new DIRECT-GLh algorithm for global optimization with hidden constraints. Optim Lett 15, 1865–1884 (2021). https://doi.org/10.1007/s11590-021-01726-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-021-01726-z

Keywords

Navigation