Skip to main content
Log in

Development and characterization of an ultrasensitive label-free electrochemical immunosensor for okadaic acid based on polydimer (p-aminobenzoic acid)-modified gold three-dimensional nanoelectrode ensembles

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

An ultrasensitive label-free electrochemical immunosensor of okadaic acid (OA) was studied based on electrodimerization of p-aminobenzoic acid (p-ABA)-modified gold three-dimensional nanoelectrode ensembles (3DNEEs) which were prepared by electroless gold plating and etching using polycarbonate as template. Staphylococcus protein A (SPA) was introduced to immobilize okadaic acid antibody (anti-OA). The morphology and composition of 3DNEEs were analyzed by scanning electron microscopy (SEM) and energy-dispersive X-ray spectrometer (EDX). The polydimer (p-aminobenzoic acid) (pPABA) film was measured by Fourier transform infrared spectrometer (FTIR). The concentration of OA was measured by EIS and SWV. The detection limit of EIS is lower than that of SWV (6.47 × 10−3 ng mL−1 vs. 9.15 × 10−3 ng mL−1), but the linear OA detection range of the latter is wider (0.01–1.0 ng mL−1 vs. 0.01–0.8 ng mL−1). The average recovery of OA in oyster samples is 99.81%. The OA recovery test in oyster samples demonstrated potential application value of the electrochemical immunosensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Satoshi I, Shota T, Yuta M et al (2015) Okadaic acid is taken-up into the cells mediated by human hepatocytes transporter OATP1B3[J]. Food Chem Toxicol 83:229–236

    Article  Google Scholar 

  2. Morimoto Y, Morimoto H, Kobayashi S et al (1999) The protein phosphatase inhibitors, okadaic acid and calyculin a, induce apoptosis in human submandibular gland ductal cell line HSG cells [J]. Oral Dis 5(2):104–110

    Article  CAS  PubMed  Google Scholar 

  3. Verma M, Chaudhary M, Singh A et al (2020) Naphthalimide-gold-based nanocomposite for the ratiometric detection of okadaic acid in shellfish [J]. Journal of Materials Chemistry B 8(36):8405–8413

    Article  CAS  PubMed  Google Scholar 

  4. Karaseva NA, Farafonova OV, Ermolaeva TN (2016) Highly sensitive detection of okadaic acid in seafood products via the unlabeled piezoelectric sensor [J]. Food Anal Methods 9(6):1495–1501

    Article  Google Scholar 

  5. Creppy EE, Traore A, Baudrimont I et al (2002) Recent advances in the study of epigenetic effects induced by the phycotoxin okadaic acid [J]. Toxicology 181:433–439

    Article  PubMed  Google Scholar 

  6. Pan L, Chen J, He X et al (2020) Aqueous photodegradation of okadaic acid and dinophysistoxin-1: persistence, kinetics, photoproducts, pathways, and toxicity evaluation [J]. Science of The Total Environment 743:140593

    Article  CAS  Google Scholar 

  7. Hayat A, Barthelmebs L, Sassolas A et al (2011) An electrochemical immunosensor based on covalent immobilization of okadaic acid onto screen printed carbon electrode via diazotization-coupling reaction [J]. Talanta 85(1):513–518

    Article  CAS  PubMed  Google Scholar 

  8. Lin C, Liu Z, Tan C et al (2015) Contamination of commercially available seafood by key diarrhetic shellfish poisons along the coast of China[J]. Environ Sci Pollut Res 22:1545–1553

    Article  CAS  Google Scholar 

  9. Antunes J, Justino C, Da CJP et al (2018) Graphene immunosensors for okadaic acid detection in seawater [J]. Microchem J 138:465–471

    Article  CAS  Google Scholar 

  10. Zou L, Tian Y, Zhang X et al (2017) A competitive love wave immunosensor for detection of okadaic acid based on immunogold staining method [J]. Sens Actuators, B Chem 238:1173–1180

    Article  CAS  Google Scholar 

  11. Prassopoulou E, Katikou P, Georgantelis D et al (2009) Detection of okadaic acid and related esters in mussels during diarrhetic shellfish poisoning (DSP) episodes in Greece using the mouse bioassay, the PP2A inhibition assay and HPLC with fluorimetric detection [J]. Toxicon 53(2):214–227

    Article  CAS  PubMed  Google Scholar 

  12. Louppis AP, Badeka AV, Katikou P et al (2010) Determination of okadaic acid, dinophysistoxin-1 and related esters in Greek mussels using HPLC with fluorometric detection, LC-MS/MS and mouse bioassay [J]. Toxicon 55(4):724–733

    Article  CAS  PubMed  Google Scholar 

  13. Pang L, Quan H, Sun Y et al (2019) A rapid competitive ELISA assay of okadaic acid level based on epoxy-functionalized magnetic beads [J]. Food Hydrocolloids 30(1):1286–1302

    CAS  Google Scholar 

  14. Eissa S, Zourob M (2012) A graphene-based electrochemical competitive immunosensor for the sensitive detection of okadaic acid in shellfish [J]. Nanoscale 4(23):7593

    Article  CAS  PubMed  Google Scholar 

  15. Paz B (2008) Identification of a new diarrhetic shellfish poisoning toxin, 19-epi-okadaic acid by liquid chromatography with mass spectrometry detection [J]. Mar Drugs 6(3):489–495

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Huang H, Lin H, Li X et al (2014) Determination of okadaic acid and dinophysistoxin-1 in mussels by high-performance liquid chromatography–tandem mass spectrometry [J]. Anal Lett 47(12):1987–1994

    Article  CAS  Google Scholar 

  17. Garthwaite I (2000) A brief review of shellfish toxins [J]. Trends Food Sci Technol 11(11):235–244

    Article  CAS  Google Scholar 

  18. Dorantes AJJ, Campbell K, Bradbury A et al (2017) Comparative performance of four immunological test kits for the detection of paralytic shellfish toxins in tasmanian shellfish [J]. Toxicon 125:110–119

    Article  Google Scholar 

  19. Chinnappan R, Alzabn R, Mir TA et al (2019) Fluorometric determination of okadaic acid using a truncated aptamer [J]. Microchim Acta 186(7):397–406

    Article  Google Scholar 

  20. Grieshaber D, Mackenzie O, OS J V, et al (2008) Electrochemical biosensors - sensor principles and architectures [J]. Sensors 8:1400–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hayat A, Barthelmebs L, Marty J (2019) Electrochemical impedimetric immunosensor for the detection of okadaic acid in mussel sample [J]. Sens Actuators, B Chem 171–172:810–815

    Google Scholar 

  22. Cao LX, Yan PS, Sun KN et al (2008) Nanoelectrode ensembles and arrays [J]. Progress in Chemistry 20(9):1276–1282

    CAS  Google Scholar 

  23. Cao LX, Yan PS, Sun KN et al (2007) Development and evaluation of gold 3D cylindrical nanoelectrode ensembles [J]. Chin J Chem 25(11):1754–1757

    Article  CAS  Google Scholar 

  24. De LM, Kuhn A, Ugo P (2007) 3D-ensembles of gold nanowires: preparation, characterization and electroanalytical peculiarities [J]. Electroanalysis 19(2–3):227–236

    Google Scholar 

  25. Menon VP, Martin CR (1995) Fabrication and evaluation of nanoelectrode ensembles [J]. Anal Chem 67(13):1920–1928

    Article  CAS  Google Scholar 

  26. Beluomini MA, Karimian N, Stradiotto NR et al (2019) Tailor-made 3D-nanoelectrode ensembles modified with molecularly imprinted poly(O-phenylenediamine) for the sensitive detection of L-arabitol [J]. Sens Actuators, B Chem 284:250–257

    Article  CAS  Google Scholar 

  27. Hong Y, Wang Y, Zhu Y (2020) Highly sensitive immunosensor based on polydopamine-nanofilm modified 3D gold nanoelectrode for A-fetoprotein detection [J]. Electrochimica Acta 364:137328

    Article  CAS  Google Scholar 

  28. Fu X, Chen X, Guo Z et al (2010) Three-dimensional gold micro-/nanopore arrays containing 2-mercaptobenzothiazole molecular adapters allow sensitive and selective stripping voltammetric determination of trace mercury (II)[J]. Electrochim Acta 56(1):463–469

    Article  CAS  Google Scholar 

  29. Kotkar RM, Srivastava AK (2006) Voltammetric determination of para-aminobenzoic acid using carbon paste electrode modified with macrocyclic compounds [J]. Sens Actuators, B Chem 119(2):524–530

    Article  CAS  Google Scholar 

  30. Zhang Y, Wang J, Xu M (2010) A sensitive DNA biosensor fabricated with gold nanoparticles/ploy (P-aminobenzoic acid)/carbon nanotubes modified electrode [J]. Colloids Surf, B 75(1):179–185

    Article  CAS  Google Scholar 

  31. Qu J, Lou T, Kang GS et al (2013) Preparation of poly-(P-aminobenzoic acid)/multiwall carbon nanotubes composite film modified glassy carbon electrode and application to detect catechol and hydroquinone simultaneously [J]. Electrochemistry 81(2):82–85

    Article  CAS  Google Scholar 

  32. Thiemann C, Brett CMA (2001) Electrosynthesis and properties of conducting polymers derived from aminobenzoic acids and from aminobenzoic acids and anilinE [J]. Synth Met 123(1):1–9

    Article  CAS  Google Scholar 

  33. Yang L, Zhao F, Zeng B (2016) Electrochemical determination of eugenol using a three-dimensional molecularly imprinted poly (P-aminothiophenol-Co-P-aminobenzoic acids) film modified electrode [J]. Electrochim Acta 210:293–300

    Article  CAS  Google Scholar 

  34. Xu F, Gao M, Wang L et al (2001) Sensitive determination of dopamine on poly(aminobenzoic acid) modified electrode and the application toward an experimental Parkinsonian animal model [J]. Talanta 55(2):329–336

    Article  CAS  PubMed  Google Scholar 

  35. Derkus B, Cebesoy EK, Mazi H et al (2014) Protein a immunosensor for the detection of immunoglobulin G by impedance spectroscopy [J]. Bioprocess Biosyst Eng 37(5):965–976

    Article  CAS  PubMed  Google Scholar 

  36. Hu H, Cao L, Li Q et al (2015) Fabrication and modeling of an ultrasensitive label free impedimetric immunosensor for aflatoxin B1 based on poly(O-phenylenediamine) modified gold 3D nano electrode ensembles [J]. RSC Adv 5(68):5529–55217

    Article  Google Scholar 

  37. Li X, Cao L, Zhang Y et al (2017) Fabrication and modeling of an ultrasensitive label free impedimetric immunosensor for aflatoxin B1 based on protein a self-assembly modified gold 3D nanotube electrode ensembles [J]. Electrochim Acta 247:1052–1059

    Article  CAS  Google Scholar 

  38. Sun X, Zhu Y, Wang X (2011) Amperometric immunosensor based on a protein A/deposited gold nanocrystals modified electrode for carbofuran detection [J]. Sensors 11(12):11679–11691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Krishnamoorthy K, Zoski CG (2005) Fabrication of 3D gold nanoelectrode ensembles by chemical etching [J]. Anal Chem 77(15):5068–5071

    Article  CAS  PubMed  Google Scholar 

  40. Li R, Cao L, Liang C et al (2020) Development and modeling of an ultrasensitive label-free electrochemical immunosensor for okadaic acid based on polythionine-modified three-dimensional gold nanoelectrode ensembles [J]. Ionic 26(9):4661–4670

    Article  CAS  Google Scholar 

  41. Brett CMA, Thiemann C (2002) Conducting polymers from aminobenzoic acids and aminobenzenesulphonic acids: influence of pH on electrochemical behaviour [J]. J Electroanal Chem 538–539:215–222

    Article  Google Scholar 

  42. Benyoucef A, Huerta F, Vazquez JL et al (2005) Synthesis and in situ FTIRS characterization of conducting polymers obtained from aminobenzoic acid isomers at platinum electrodes [J]. Eur Polymer J 41(4):843–852

    Article  CAS  Google Scholar 

  43. Liu Y, Yu D, Zeng C et al (2010) Biocompatible graphene oxide-based glucose biosensors [J]. Langmuir 26(9):6158–6160

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research work was supported by COMRA project (DY135-B2-17) and the National Natural Science Foundation of China (No. 21273056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixin Cao.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nai, H., Cao, L., Sun, S. et al. Development and characterization of an ultrasensitive label-free electrochemical immunosensor for okadaic acid based on polydimer (p-aminobenzoic acid)-modified gold three-dimensional nanoelectrode ensembles. Ionics 27, 5323–5331 (2021). https://doi.org/10.1007/s11581-021-04252-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04252-1

Keywords

Navigation