Skip to main content
Log in

Controlled preparation of Ni–Al LDH–NO3 by a dual-anion intercalating process for supercapacitors

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Ni–Al layered double hydroxide with nitrate anions as interlayer building blocks was synthesized by a dual-anion intercalating strategy of hydroxyl and nitrate anions during a facile co-precipitation process. In this case, nitrate anions with low charge densities are capable to expand the interplanar spacing between host layers of Ni–Al layered double hydroxide in the replacement of pristine carbonate anions, benefiting to the diffusion of electrolyte ions to active sites within electrodes. Moreover, the optimization for packed arrangement of Ni–Al layered double hydroxide with nitrate anions nanosheets can be effectively realized by modulating reactant concentrations, leading to the formation of nanolayered structure in favor of increasing electrolyte accessible active sites within electrodes. The optimized Ni–Al layered double hydroxide with nitrate anions achieves a high specific capacitance of 1616 F g−1 at 1 A g−1 together with a capacitance retention of 82% at 10 A g−1 and good cycling stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lim AC, Jadhav HS, Seo JG (2018) Electron transport shuttle mechanism via an Fe-N-C bond derived from a conjugated microporous polymer for a supercapacitor. Dalton Trans 47:852–858

    Article  CAS  PubMed  Google Scholar 

  2. Yang J, Yu C, Fan X, Ling Z, Qiu J, Gogotsi Y (2013) Facile fabrication of MWCNT-doped NiCoAl-layered double hydroxide nanosheets with enhanced electrochemical performances. J Mater Chem A 1:1963–1968

    Article  CAS  Google Scholar 

  3. Dubal DP, Ayyad O, Ruiz V, Gómez-Romero P (2015) Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem Soc Rev 44:1777–1790

    Article  CAS  PubMed  Google Scholar 

  4. Gunjakar JL, Inamdar AI, Hou B, Cha S, Pawar SM, Abu AT, Chavan HS, Kim J, Cho S, Lee S (2018) Direct growth of 2D nickel hydroxide nanosheets intercalated with polyoxovanadate anions as a binder-free supercapacitor electrode. Nanoscale 10:8953–9412

    Article  CAS  PubMed  Google Scholar 

  5. Nagaraju C, Gopi CV, Ahn JW, Kim HJ (2018) Hydrothermal synthesis of MoS2 and WS2 nanoparticles for high-performance supercapacitor applications. New J Chem 42:12357–12360

    Article  CAS  Google Scholar 

  6. Huang YY, Lin LY (2018) Synthesis of ternary metal oxides for battery-supercapacitor hybrid devices: influences of metal species on redox reaction and electrical conductivity. ACS Appl Energy Mater 1:2979–2990

    Article  CAS  Google Scholar 

  7. Wen F, Zhang Y, Qian X, Zhang J, Hu R, Hu X, Wang X, Zhu J (2017) Carbon-induced generation of hierarchical structured Ni0.75Co0.25(CO3)0.125(OH)2 for enhanced supercapacitor performance. ACS Appl Mater Inter 9:44441–44451

    Article  CAS  Google Scholar 

  8. Chen S, Wu Q, Wen M, Wang C, Wu Q, Wen J, Zhu M, Wang Y (2017) A tubular sandwich-structured CNT@Ni@Ni2(CO3)(OH)2 with high stability and superior capacity as hybrid supercapacitor. J Phys Chem C 121:9719–9728

    Article  CAS  Google Scholar 

  9. Liu T, Zhang L, Cheng B, You W, Yu J (2018) Fabrication of a hierarchical NiO/C hollow sphere composite and its enhanced supercapacitor performance. Chem Commun 54:3731–3734

    Article  CAS  Google Scholar 

  10. Zhu JS, Zhang SQ, Wang DL (2017) Facile fabrication of coal-derived activated carbon/Co3O4 nanocomposites with superior electrochemical performance. Ionics 23:1927–1931

    Article  CAS  Google Scholar 

  11. Fan H, Niu R, Duan J, Liu W, Shen W (2016) Fe3O4@carbon nanosheets for all-solid-state supercapacitor electrodes. ACS Appl Mater Inter 8:19475–19483

    Article  CAS  Google Scholar 

  12. Zhang Y, Jing X, Wang Q, Zheng J, Jiang H, Meng C (2017) Three-dimensional porous V2O5 hierarchical spheres as a battery-type electrode for a hybrid supercapacitor with excellent charge storage performance. Dalton Trans 46:15048–15058

    Article  CAS  PubMed  Google Scholar 

  13. Ding XB, Zhu JS, Hu GZ, Zhang SQ (2019) Core-shell structured CoNi2S4@polydopamine nanocomposites as advanced electrode materials for supercapacitors. Ionics 25:897–901

    Article  CAS  Google Scholar 

  14. Jiang W, Hu F, Yan Q, Wu X (2017) Investigation on electrochemical behaviors of NiCo2O4 battery-type supercapacitor electrodes: the role of an aqueous electrolyte. Inorg Chem Front 4:1642–1648

    Article  CAS  Google Scholar 

  15. Liu Y, Fu N, Zhang G, Xu M, Lu W, Zhou L, Huang H (2017) Design of hierarchical Ni-Co@Ni-Co layered double hydroxide core-shell structured nanotube array for high-performance flexible all-solid-state battery-type supercapacitors. Adv Funct Mater 27:1605307

    Article  CAS  Google Scholar 

  16. Li X, Zai J, Liu Y, He X, Xiang S, Ma Z, Qian X (2016) Atomically thin layered NiFe double hydroxides assembled 3D microspheres with promoted electrochemical performances. J Power Sources 325:675–681

    Article  CAS  Google Scholar 

  17. Malak-Polaczyk A, Vix-Guterl C, Frackowiak E (2010) Carbon/layered double hydroxide (LDH) composites for supercapacitor application. Energ Fuel 24:3346–3351

    Article  CAS  Google Scholar 

  18. Zhou P, Wang C, Liu Y, Wang Z, Wang P, Qin X, Zhang X, Dai Y, Whangbo MH, Huang BB (2018) Sulfuration of NiV-layered double hydroxide towards novel supercapacitor electrode with enhanced performance. Chem Eng J 351:119–126

    Article  CAS  Google Scholar 

  19. Lin J, Jia H, Liang H, Chen S, Cai Y, Qi J, Qu C, Cao J, Fei W, Feng J (2018) Hierarchical CuCo2S4@NiMn-layered double hydroxide core-shell hybrid arrays as electrodes for supercapacitors. Chem Eng J 336:562–569

    Article  CAS  Google Scholar 

  20. Xiao Y, Su D, Wang X, Wu S, Zhou L, Sun Z, Wang Z, Fang S, Li F (2017) Ultrahigh energy density and stable supercapacitor with 2D NiCoAl layered double hydroxide. Electrochim Acta 253:324–332

    Article  CAS  Google Scholar 

  21. Jagadale AD, Guan G, Li X, Du X, Ma X, Hao X, Abudula A (2016) Ultrathin nanoflakes of cobalt-manganese layered double hydroxide with high reversibility for asymmetric supercapacitor. J Power Sources 306:526–534

    Article  CAS  Google Scholar 

  22. Shao M, Zhang R, Li Z, Wei M, Evans DG, Duan X (2015) Layered double hydroxides toward electrochemical energy storage and conversion: design, synthesis and applications. Chem Commun 51:15880–15893

    Article  CAS  Google Scholar 

  23. Chen CR, Zeng HY, Xu S, Liu XJ, Xiao HM, Duan HZ (2016) Microwave-assisted preparation of SO4 2− intercalated hydrotalcites for ammonia-nitrogen removal. RSC Adv 6:12753–12760

    Article  CAS  Google Scholar 

  24. Liu Z, Ma R, Osada M, Iyi N, Ebina Y, Takada K, Sasaki T (2006) Synthesis, anion exchange, and delamination of Co-Al layered double hydroxide: assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies. J Am Chem Soc 128:4872–4880

    Article  CAS  PubMed  Google Scholar 

  25. Ma R, Liu Z, Li L, Iyi N, Sasaki T (2006) Exfoliating layered double hydroxides in formamide: a method to obtain positively charged nanosheets. J Mater Chem 16:3809–3813

    Article  CAS  Google Scholar 

  26. Zhang L, Hui KN, Hui KS, Chen X, Chen R, Lee H (2016) Role of graphene on hierarchical flower-like NiAl layered double hydroxide-nickel foam-graphene as binder-free electrode for high-rate hybrid supercapacitor. Int J Hydrog Energy 41:9443–9453

    Article  CAS  Google Scholar 

  27. Li L, Hui KS, Hui KN, Xia Q, Fu J, Cho YR (2017) Facile synthesis of NiAl layered double hydroxide nanoplates for high-performance asymmetric supercapacitor. J Alloy Compd 721:803–812

    Article  CAS  Google Scholar 

  28. Du M, Yin X, Tang C, Huang TJ, Gong H (2016) Takovite-derived 2-D Ni/Al double hydroxide monolayer and graphene hybrid electrodes for electrochemical energy storage applications with high volumetric capacitance. Electrochim Acta 190:521–530

    Article  CAS  Google Scholar 

  29. Lee JH, Lee HJ, Lim SY, Chae KH, Park SH, Chung KY, Deniz E, Choi JW (2017) Stabilized octahedral frameworks in layered double hydroxides by solid-solution mixing of transition metals. Adv Funct Mater 27:1605225

    Article  CAS  Google Scholar 

  30. Lin Y, Xie X, Wang X, Zhang B, Li C, Wang H, Wang L (2017) Understanding the enhancement of electrochemical properties of NiCo layered double hydroxides via functional pillared effect: an insight into dual charge storage mechanisms. Electrochim Acta 246:406–414

    Article  CAS  Google Scholar 

  31. Lin W, Yu W, Hu Z, Ouyang W, Shao X, Li R, Yuan DS (2014) Superior performance asymmetric supercapacitors based on flake-like Co/Al hydrotalcite and graphene. Electrochim Acta 143:331–339

    Article  CAS  Google Scholar 

  32. Li X, Yu L, Wang G, Wan G, Peng X, Wang K, Wang G (2017) Hierarchical NiAl LDH nanotubes constructed via atomic layer deposition assisted method for high performance supercapacitors. Electrochim Acta 255:15–22

    Article  CAS  Google Scholar 

  33. Wang Y, Wang L, Wei B, Miao Q, Yuan Y, Yang Z, Fei W (2015) Electrodeposited nickel cobalt sulfide nanosheet arrays on 3D-graphene/Ni foam for high-performance supercapacitors. RSC Adv 5:100106–100113

    Article  CAS  Google Scholar 

  34. Xiao Y, Su D, Wang X, Zhou L, Wu S, Li F, Fang S (2015) In suit growth of ultradispersed NiCo2S4 nanoparticles on graphene for asymmetric supercapacitors. Electrochim Acta 176:44–50

    Article  CAS  Google Scholar 

  35. Tian D, Lu X, Nie G, Gao M, Wang C (2018) Direct growth of Ni-Mn-O nanosheets on flexible electrospun carbon nanofibers for high performance supercapacitor applications. Inorg Chem Front 5:635–642

    Article  CAS  Google Scholar 

  36. Chang Y, Sui Y, Qi J, Jiang L, He Y, Wei F, Meng Q, Jin Y (2017) Facile synthesis of Ni3S2 and Co9S8 double-size nanoparticles decorated on rGO for high-performance supercapacitor electrode materials. Electrochim Acta 226:69–78

    Article  CAS  Google Scholar 

  37. Tian H, Bao WT, Jiang Y, Wang L, Zhang L, Sha O, Wu CQ, Gao FM (2018) Fabrication of Ni-Al LDH/nitramine-N-doped graphene hybrid composites via a novel self-assembly process for hybrid supercapacitors. Chem Eng J 354:1132–1140

    Article  CAS  Google Scholar 

  38. Rizescu C, Podolean I, Albero J, Parvulescu VI, Coman SM, Bucur C, Puche M, Garcia H (2017) N-doped graphene as a metal-free catalyst for glucose oxidation to succinic acid. Green Chem 19:1999–2005

    Article  CAS  Google Scholar 

  39. Wang B, Williams GR, Chang Z, Jiang M, Liu J, Lei X, Sun X (2014) Hierarchical NiAl layered double hydroxide/multiwalled carbon nanotube/nickel foam electrodes with excellent pseudocapacitive properties. ACS Appl Mater Inter 6:16304–16311

    Article  CAS  Google Scholar 

  40. Qu C, Zhao B, Jiao Y, Chen D, Dai S, Deglee BM, Chen Y, Walton KS, Zou R, Liu M (2017) Functionalized bimetallic hydroxides derived from metal-organic frameworks for high-performance hybrid supercapacitor with exceptional cycling stability. ACS Energy Lett 2:1263–1269

    Article  CAS  Google Scholar 

  41. Sun P, Wang C, He W, Hou P, Xu X (2017) One-step synthesis of 3D network-like NixCo1-xMoO4 porous nanosheets for high performance battery-type hybrid supercapacitors. ACS Sustain Chem Eng 5:10139–10147

    Article  CAS  Google Scholar 

  42. Sirisinudomkit P, Iamprasertkun P, Krittayavathananon A, Pettong T, Dittanet P, Kidkhunthod P, Sawangphruk M (2017) Hybrid energy storage of battery-type nickel hydroxide and supercapacitor-type graphene: redox additive and charge storage mechanism. Sustain Energy Fuels 1:275–279

    Article  CAS  Google Scholar 

  43. Kong D, Cheng C, Wang Y, Wong JI, Yang Y, Yang HY (2015) Three-dimensional Co3O4@C@Ni3S2 sandwich-structured nanoneedle arrays: towards high-performance flexible all-solid-state asymmetric supercapacitors. J Mater Chem A 3:16150–16161

    Article  CAS  Google Scholar 

Download references

Funding

The above work was supported by the National Natural Science Foundation of China (51702280), Hebei Province Natural Science Foundation of China (B2016203134), and Hebei Education Department Young Foundation of China (QN2017147).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua Tian or Lin Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, W., Tian, H., Jiang, Y. et al. Controlled preparation of Ni–Al LDH–NO3 by a dual-anion intercalating process for supercapacitors. Ionics 25, 3859–3866 (2019). https://doi.org/10.1007/s11581-019-02952-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-02952-3

Keywords

Navigation