Skip to main content

Advertisement

Log in

Nitrogen-doped porous carbon coated on graphene sheets as anode materials for Li-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A hierarchical structure of nitrogen-doped porous carbon coated on graphene sheets (GNC) has been successfully synthesized via a facile method. Notably, nitrogen-doped porous carbon (NC) was prepared by direct calcinations of sodium citrate and urea without aid of any additional carbon source and template. The porous structure arises from the decomposition of sodium citrate and the formative Na2CO3 is the hard template during the annealing process. To our pleasure, the 3D architecture is derived from the graphene sheets as skeleton to support porous carbon, which avoids the agglomeration of graphene and enlarges the specific surface area of porous carbon. Besides, using urea as resource of N element promotes a high N-doping level (3.33 atom %) and improves electrical conductivity and lithium storage sites. Thus, the obtained GNC-700 °C as an anode material delivers a high-reversible capacity of 842.7 mAh g−1 at 0.1 A g−1 and good cycling performances (431.4 mAh g−1 at 0.5 A g−1 after 200 cycles). The distinguished carbon anode material demonstrates an appealing development for Li-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang F, Wu X, Li C, Zhu Y, Fu L, Wu Y, Liu X (2016) Nanostructured positive electrode materials for post-lithium ion batteries. Energy Environ Sci 9:3570–3611

    Article  CAS  Google Scholar 

  2. Kim H, Kim H, Ding Z, Lee MH, Lim K, Yoon G, Kang K (2016) Recent progress in electrode materials for sodium-ion batteries. Adv Energy Mater 6:1600943

    Article  CAS  Google Scholar 

  3. He Y, Chen W, Li X, Zhang Z, Fu J, Zhao C, Xie E (2013) Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. ACS Nano 7:174–182

    Article  CAS  PubMed  Google Scholar 

  4. Su L, Gao L, Du Q, Hou L, Ma Z, Qin X, Shao G (2018) Construction of NiCo2O4@MnO2 nanosheet arrays for high-performance supercapacitor: highly cross-linked porous heterostructure and worthy electrochemical double-layer capacitance contribution. J Alloys Compd 749:900–908

    Article  CAS  Google Scholar 

  5. Liu W, Li X, Xiong D, Hao Y, Li J, Kou H, Yan B, Li D, Lu S, Koo A, Adair K, Sun X (2018) Significantly improving cycling performance of cathodes in lithium ion batteries: the effect of Al2O3 and LiAlO2 coatings on LiNi0.6Co0.2Mn0.2O2. Nano Energy 44:111–120

    Article  CAS  Google Scholar 

  6. Jin R, Li X, Sun Y, Shan H, Fan L, Li D, Sun X (2018) Metal–organic frameworks-derived Co2P@N-C@rGO with dual protection layers for improved sodium storage. ACS Appl Mater Interfaces 10:14641–14648

    Article  CAS  PubMed  Google Scholar 

  7. Fan L, Li X, Song X, Hu N, Xiong D, Koo A, Sun X (2018) Promising dual-doped graphene aerogel/SnS2 nanocrystal building high performance sodium ion batteries. ACS Appl Mater Interfaces 10:2637–2648

    Article  CAS  PubMed  Google Scholar 

  8. Tarascon JM (2010) Is lithium the new gold? Nat Chem 2:510

    Article  CAS  PubMed  Google Scholar 

  9. Sun G, Yin X, Yang W, Zhang J, Du Q, Ma Z, Shao G, Wang Z (2018) Synergistic effects of ion doping and surface-modifying for lithium transition-metal oxide: synthesis and characterization of La2O3-modified LiNi1/3Co1/3Mn1/3O2. Electrochim Acta

  10. Xu W, Xie Z, Cui X, Zhao K, Zhang L, Mai L, Wang Y (2016) Direct growth of an economic green energy storage material: a monocrystalline jarosite-KFe3(SO4)2(OH)6-nanoplates@rGO hybrid as a superior lithium-ion battery cathode. J Mater Chem A 4:3735–3742

  11. Nishihara H, Kyotani T (2012) Energy storage: templated nanocarbons for energy storage (Adv. Mater. 33/2012). Adv Mater 24:4466–4466

    Article  CAS  Google Scholar 

  12. Kaskhedikar NA, Maier J (2010) Lithium storage in carbon nanostructures. Adv Mater 21:2664–2680

    Article  CAS  Google Scholar 

  13. Li D, Ding LX, Chen H, Wang S, Li Z, Zhu M, Wang H (2014) Novel nitrogen-rich porous carbon spheres as a high-performance anode material for lithium-ion batteries. J Mater Chem A 2:16617–16622

    Article  CAS  Google Scholar 

  14. Guo DC, Han F, Lu AH (2015) Porous carbon anodes for a high capacity lithium-ion battery obtained by incorporating silica into benzoxazine during polymerization. Chem 21:1520–1525

    Article  CAS  Google Scholar 

  15. Zhu C, Akiyama T (2016) Cotton derived porous carbon via an MgO template method for high performance lithium ion battery anodes. Green Chem 18:2106–2114

    Article  CAS  Google Scholar 

  16. Lu P, Sun Y, Xiang H, Liang X, Yu Y (2018) 3D amorphous carbon with controlled porous and disordered structures as a high-rate anode material for sodium-ion batteries. Adv Energy Mater 8

  17. Li Z, Xu Z, Tan X, Wang H, Holt CMB, Stephenson T, Olsen BC, Mitlin D (2013) Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors. Energy Environ Sci 6:871–878

    Article  CAS  Google Scholar 

  18. Wu Y, Fang S, Jiang Y (1998) Carbon anode materials based on melamine resin. J Mater Chem 8:2223–2227

    Article  CAS  Google Scholar 

  19. Chen L, Song L, Zhang Y, Wang P, Xiao Z, Guo YG, Cao F (2016) Nitrogen and sulfur co-doped reduced graphene oxide as a general platform for rapid and sensitive fluorescent detection of biological species. ACS Appl Mater Interaces 8:11255

    Article  CAS  Google Scholar 

  20. Yin G, Gao Y, Shi P, Cheng X, Aramata A (2003) The effect of boron doping on lithium intercalation performance of boron-doped carbon materials. Mater Chem Phys 80:94–101

    Article  CAS  Google Scholar 

  21. Hou J, Cao C, Idrees F, Ma X (2015) Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano 9:2556–2564

    Article  CAS  PubMed  Google Scholar 

  22. Shin WH, Jeong HM, Kim BG, Kang JK, Choi JW (2012) Nitrogen-doped multiwall carbon nanotubes for lithium storage with extremely high capacity. Nano Lett 12:2283–2288

    Article  CAS  PubMed  Google Scholar 

  23. Li J, Lu L, Kang T, Cheng S (2016) Intense charge transfer surface based on graphene and thymine–Hg (II)–thymine base pairs for detection of Hg2+. Biosens Bioelectron 77:740–745

  24. Eda G, Lin YY, Mattevi C, Yamaguchi H, Chen HA, Chen IS, Chen CW, Chhowalla M (2010) Blue photoluminescence from chemically derived graphene oxide. Adv Mater 22:505–509

    Article  CAS  PubMed  Google Scholar 

  25. Zhu D, Wang L, Xu X, Wei J (2016) Label-free and enzyme-free detection of transcription factors with graphene oxide fluorescence switch-based multifunctional G-quadruplex-hairpin probe. Biosens Bioelectron 75:155–116

    Article  CAS  PubMed  Google Scholar 

  26. Chen Y, Zhang X, Yu P, Ma Y (2009) Stable dispersions of graphene and highly conducting graphene films: a new approach to creating colloids of graphene monolayers. Chem Commun 30:4527

    Article  CAS  Google Scholar 

  27. Mukherjee R, Thomas AV, Krishnamurthy A, Koratkar N (2012) Photothermally reduced graphene as high-power anodes for lithium-ion batteries. ACS Nano 6:7867–7878

    Article  CAS  PubMed  Google Scholar 

  28. Xie Z, He Z, Feng X, Xu W, Cui X, Zhang J, Yan C, Carreon MA, Liu Z, Wang Y (2016) Hierarchical sandwich-like structure of ultrafine N-rich porous carbon nanospheres grown on graphene sheets as superior lithium-ion battery anodes. ACS Appl Mater Interfaces 8:10324–10333

    Article  CAS  PubMed  Google Scholar 

  29. Jr WSH, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  Google Scholar 

  30. Ai W, Zhou W, Du Z, Du Y, Zhang H, Jia X, Xie L, Yi M, Yu T, Huang W (2012) Benzoxazole and benzimidazole heterocycle-grafted graphene for high-performance supercapacitor electrodes. J Mater Chem 22:23439–23446

    Article  CAS  Google Scholar 

  31. Qian W, Sun F, Xu Y, Qiu L, Liu C, Wang S, Yan F (2013) Human hair-derived carbon flakes for electrochemical supercapacitors. Energy Environ Sci 7:379–386

    Article  Google Scholar 

  32. Jang JW, Lee KS, Lyu SC, Lee TJ, Lee CJ (2004) Structural study of nitrogen-doping effects in bamboo-shaped multiwalled carbon nanotubes. Appl Phys Lett 84:2877–2879

    Article  CAS  Google Scholar 

  33. Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G (2009) Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett 9:1752–1758

    Article  CAS  PubMed  Google Scholar 

  34. Palaniselvam T, Biswal BP, Banerjee R, Kurungot S (2013) Zeolitic imidazolate framework (ZIF)-derived, hollow-core, nitrogen-doped carbon nanostructures for oxygen-reduction reactions in PEFCs. Chem 19:9335–9342

    Article  CAS  Google Scholar 

  35. Zhao J, Lai H, Lyu Z, Jiang Y, Xie K, Wang X, Wu Q, Yang L, Jin Z, Ma Y (2015) Hydrophilic hierarchical nitrogen-doped carbon nanocages for ultrahigh supercapacitive performance. Adv Mater 27:3541–3545

    Article  CAS  PubMed  Google Scholar 

  36. Mao Y, Duan H, Xu B, Zhang L, Hu Y, Zhao C, Wang Z, Chen L, Yang Y (2012) Lithium storage in nitrogen-rich mesoporous carbon materials. Energy Environ Sci 5:7950–7955

    Article  CAS  Google Scholar 

  37. Yang W, Yang W, Kong L, Song A, Qin X, Shao G (2017) Phosphorus-doped 3D hierarchical porous carbon for high-performance supercapacitors: a balanced strategy for pore structure and chemical composition. Carbon

  38. Wang Z, Huang X, Chen L (1999) Lithium insertion/extraction in pyrolyzed phenolic resin. J Power Sources 81–82:328–334

    Article  Google Scholar 

  39. Yang W, Yang W, Song A, Sun G, Shao G (2018) 3D interconnected porous carbon nanosheets/carbon nanotubes as a polysulfide reservoir for high performance lithium-sulfur batteries. Nanoscale 10:816–824

    Article  CAS  PubMed  Google Scholar 

  40. Dahn JR, Zheng T, Liu Y, Xue JS (1995) Mechanisms for lithium insertion in carbonaceous materials. Science 270:590–593

    Article  CAS  Google Scholar 

  41. Zhou X, Chen F, Bai T, Long B, Liao Q, Ren Y, Yang J (2016) Interconnected highly graphitic carbon nanosheets derived from wheat stalk as high performance anode materials for lithium ion batteries. Green Chem 18:2078–2088

    Article  CAS  Google Scholar 

Download references

Funding

This research received financial support from the Natural Science Foundation of Hebei Province (B2018203330).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiujuan Qin.

Electronic supplementary material

ESM 1

(DOC 466 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, L., Gao, L., Hou, L. et al. Nitrogen-doped porous carbon coated on graphene sheets as anode materials for Li-ion batteries. Ionics 25, 1541–1549 (2019). https://doi.org/10.1007/s11581-018-2713-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2713-1

Keywords

Navigation