Skip to main content
Log in

One-step hydrothermal synthesis of TiO2 nanowires-reduced graphene oxide nanocomposite for supercapacitor

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Graphene oxide (GO) was prepared by a modified Hummers method. TiO2 nanoparticles (TiO2 NPs) and NaOH were added into the GO suspension to prepare TiO2 nanowires-reduced GO (TiO2 NWs-rGO) nanocomposite by one-step hydrothermal synthesis. Effects of the initial mass ratio of TiO2 NPs and GO on the morphologies and electrochemical properties of the nanocomposite were investigated in detail. The results show that TiO2 NWs with the length of ~ 10 μm and the diameter of ~ 50 nm are homogeneously distributed on the graphene nanosheets when the initial mass ratio of TiO2 NPs and GO is 1:4. Its specific capacitance of the TiO2 NWs-rGO nanocomposite can reach 572 F·g−1 at 1 A·g−1 in 6 M KOH. Moreover, the nanocomposite exhibits a long-term cycle stability, ~ 84% specific capacitance after 5000 cycles at 10 A·g−1. It suggests that it has potential as an electrode material for high-performance electrochemical supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Inagaki M, Konno H, Tanaike O (2010) Carbon materials for electrochemical capacitors. J Power Sources 195(24):7880–7903

    Article  CAS  Google Scholar 

  2. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38(9):2520–2531

    Article  CAS  PubMed  Google Scholar 

  3. Liu C, Yu Z, Neff D, Zhamu A, Jang BZ (2010) Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 10(12):4863–4868

    Article  CAS  PubMed  Google Scholar 

  4. Beguin F, Presser V, Balducci A, Frackowiak E (2014) Carbons and electrolytes for advanced supercapacitors. Adv Mater 26(14):2219–2251 2283

    Article  CAS  PubMed  Google Scholar 

  5. Wang H, Yi H, Chen X, Wang X (2014) One-step strategy to three-dimensional graphene/VO2 nanobelt composite hydrogels for high performance supercapacitors. J Mater Chem A 2(4):1165–1173

    Article  CAS  Google Scholar 

  6. Dong X, Wang X, Wang J, Song H, Li X, Wang L, Chan-Park MB, Li CM, Chen P (2012) Synthesis of a MnO2–graphene foam hybrid with controlled MnO2 particle shape and its use as a supercapacitor electrode. Carbon 50(13):4865–4870

    Article  CAS  Google Scholar 

  7. Kim D, Yun J, Lee G, Ha JS (2014) Fabrication of high performance flexible micro-supercapacitor arrays with hybrid electrodes of MWNT/V2O5 nanowires integrated with a SnO2 nanowire UV sensor. Nanoscale 6(20):12034–12041

    Article  CAS  PubMed  Google Scholar 

  8. Foo CY, Sumboja A, Tan DJH, Wang J, Lee PS (2014) Flexible and highly scalable V2O5-rGO electrodes in an organic electrolyte for supercapacitor devices. Adv Energy Mater 4(12):3412–3420

    Article  CAS  Google Scholar 

  9. Qian T, Xu N, Zhou J, Yang T, Liu X, Shen X, Liang J, Yan C (2015) Interconnected three-dimensional V2O5/polypyrrole network nanostructures for high performance solid-state supercapacitors. J Mater Chem A 3(2):488–493

    Article  CAS  Google Scholar 

  10. Hu CC, Hsu TC, Kao LH (2012) One-step cohydrothermal synthesis of nitrogen-doped titanium oxide nanotubes with enhanced visible light photocatalytic activity. Int J Photoenergy 2012:1–9

    Google Scholar 

  11. Das M, Datta J, Dey A, Jana R, Layek A, Middya S, Ray PP (2015) One step hydrothermal synthesis of a rGO–TiO2 nanocomposite and its application on a Schottky diode: improvement in device performance and transport properties. RSC Adv 5(123):101582–101592

    Article  CAS  Google Scholar 

  12. Yang S, Lin Y, Song X, Zhang P, Gao L (2015) Covalently coupled ultrafine H-TiO2 nanocrystals/nitrogen-doped graphene hybrid materials for high-performance supercapacitor. ACS Appl Mat Interfaces 7(32):17884–17892

    Article  CAS  Google Scholar 

  13. Al-Rubaye S, Rajagopalan R, Subramaniyam CM, Yu Z, Dou SX, Cheng Z (2016) Electrochemical performance enhancement in MnCo2O4 nanoflake/graphene nanoplatelets composite. J Power Sources 324:179–187

    Article  CAS  Google Scholar 

  14. Zhai T, Wan L, Sun S, Chen Q, Sun J, Xia Q, Xia H (2017) Phosphate ion functionalized Co3O4 ultrathin nanosheets with greatly improved surface reactivity for high performance pseudocapacitors. Adv Mater 29(7):1604167

    Article  CAS  Google Scholar 

  15. He X, Yang CP, Zhang GL, Shi DW, Huang QA, Xiao HB, Liu Y, Xiong R (2016) Supercapacitor of TiO2 nanofibers by electrospinning and KOH treatment. Mater Des 106:74–80

    Article  CAS  Google Scholar 

  16. Ding Y, Bai W, Sun J, Wu Y, Memon MA, Wang C, Liu C, Huang Y, Geng J (2016) Cellulose tailored anatase TiO2 nanospindles in three-dimensional graphene composites for high-performance supercapacitors. ACS Appl Mat Interfaces 8(19):12165–12175

    Article  CAS  Google Scholar 

  17. Liu Y, Gao T, Xiao H, Guo W, Sun B, Pei M, Zhou G (2017) One-pot synthesis of rice-like TiO2/graphene hydrogels as advanced electrodes for supercapacitors and the resulting aerogels as high-efficiency dye adsorbents. Electrochim Acta 229:239–252

    Article  CAS  Google Scholar 

  18. Weiss NO, Zhou H, Liao L, Liu Y, Jiang S, Huang Y, Duan X (2012) Graphene: an emerging electronic material. Adv Mater 24(43):5782–5825

    Article  CAS  PubMed  Google Scholar 

  19. Hassoun J, Bonaccorso F, Agostini M, Angelucci M, Betti MG, Cingolani R, Gemmi M, Mariani C, Panero S, Pellegrini V, Scrosati B (2014) An advanced lithium-ion battery based on a graphene anode and a lithium iron phosphate cathode. Nano Lett 14(8):4901–4906

    Article  CAS  PubMed  Google Scholar 

  20. Ke Q, Liao Y, Yao S, Song L, Xiong X (2015) A three-dimensional TiO2/graphene porous composite with nano-carbon deposition for supercapacitor. J Mater Sci 51(4):2008–2016

    Article  CAS  Google Scholar 

  21. Zhou H, Zhang Y (2014) Electrochemically self-doped TiO2 nanotube arrays for supercapacitors. J Phys Chem C 118(11):5626–5636

    Article  CAS  Google Scholar 

  22. Goriparti S, Miele E, Prato M, Scarpellini A, Marras S, Monaco S, Toma A, Messina GC, Alabastri A, De Angelis F, Manna L, Capiglia C, Zaccaria RP (2015) Direct synthesis of carbon-doped TiO2-bronze nanowires as anode materials for high performance lithium-ion batteries. ACS Appl Mat Interfaces 7(45):25139–25146

    Article  CAS  Google Scholar 

  23. Ramadoss A, Kim G-S, Kim SJ (2013) Fabrication of reduced graphene oxide/TiO2 nanorod/reduced graphene oxide hybrid nanostructures as electrode materials for supercapacitor applications. CrystEngComm 15(47):10222–10229

    Article  CAS  Google Scholar 

  24. Xiang C, Li M, Zhi M, Manivannan A, Wu N (2012) Reduced graphene oxide/titanium dioxide composites for supercapacitor electrodes: shape and coupling effects. J Mater Chem 22(36):19161–19167

    Article  CAS  Google Scholar 

  25. Sun X, Xie M, Travis JJ, Wang G, Sun H, Lian J, George SM (2013) Pseudocapacitance of amorphous TiO2 thin films anchored to graphene and carbon nanotubes using atomic layer deposition. J Phys Chem C 117(44):22497–22508

    Article  CAS  Google Scholar 

  26. Salari M, Aboutalebi SH, Chidembo AT, Nevirkovets IP, Konstantinov K, Liu HK (2012) Enhancement of the electrochemical capacitance of TiO2 nanotube arrays through controlled phase transformation of anatase to rutile. Phys Chem Chem Phys 14(14):4770–4779

    Article  CAS  PubMed  Google Scholar 

  27. An KH, Kim WS, Park YS, Choi YC, Lee SM, Chung DC (2010) Supercapacitors using singlewalled carbon nanotube electrodes. Adv Mater 13(7):497–500

    Article  Google Scholar 

  28. Bavykin DV, Parmon VN, Lapkin AA, Walsh FC (2004) The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. J Mater Chem 14(22):3370–3377

    Article  CAS  Google Scholar 

  29. Huang J, Cao Y, Deng Z, Tong H (2011) Formation of titanate nanostructures under different NaOH concentration and their application in wastewater treatment. J Solid State Chem 184(3):712–719

    Article  CAS  Google Scholar 

  30. Ramadoss A, Kim SJ (2013) Improved activity of a graphene–TiO2 hybrid electrode in an electrochemical supercapacitor. Carbon 63:434–445

    Article  CAS  Google Scholar 

  31. Pan X, Zhao Y, Liu S, Korzeniewski CL, Wang S, Fan Z (2012) Comparing graphene-TiO2 nanowire and graphene-TiO2 nanoparticle composite photocatalysts. ACS Appl Mat Interfaces 4 (8):3944

Download references

Funding

This work is supported by the Natural Science Foundation of Heilongjiang Province (LC2015020), Technology Foundation for Selected Overseas Chinese Scholar, Ministry of Personnel of China (2015192), the Innovative Talent Fund of Harbin city (2016RAQXJ185), and Science Funds for the Young Innovative Talents of HUST (201604).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Yan Yue.

Additional information

Highlights

• One-step hydrothermal synthesis of TiO2 nanowires-reduced graphene oxide composite (TiO2NWs-rGO).

• The initial mass ratio of TiO2 nanoparticles and GO has a great effect on the morphologies and electrochemical properties of the composite.

• The composite exhibits a specific capacitance of 572F·g−1 at 1 A·g−1 in 6 M KOH.

• The composite exhibits a long-term cycle stability, retaining 84% specific capacitance after 5000 cycles at 10 A·g−1.

Electronic supplementary material

ESM 1

(DOC 2679 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, H.Y., Guan, E.H., Gao, X. et al. One-step hydrothermal synthesis of TiO2 nanowires-reduced graphene oxide nanocomposite for supercapacitor. Ionics 25, 2411–2418 (2019). https://doi.org/10.1007/s11581-018-2678-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2678-0

Keywords

Navigation