Skip to main content
Log in

Electrical conductivity and dielectric analysis of NaH2PO4 compound

  • Original Papers
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The sodium dihydrogen phosphate NaH2PO4 can be obtained by slow evaporation at room temperature and characterized by X-ray powder diffraction, scanning electron microscopy (SEM), and electrical impedance spectroscopy. The X-ray diffraction pattern revealed that the sample presents a single phase that crystallizes in the monoclinic structure with a P21/c space group, and the unit cell parameters are a = 6.8034 Å, b = 13.4014 Å, c = 7.2986 Å, and β = 92.827°. The dielectric impedance properties were studied over the range of frequency between 103 Hz and 1 MHz and in the temperature range of 300–440 K. The Z′ and Z″ versus frequency plots are well fitted to an equivalent circuit model. The circuits consist of the parallel combination of resistance (R), fractal capacitance (CPE), and capacitance (C). Furthermore, the frequency-dependent AC conductivity obeys Jonscher’s universal power law. In fact, the near values of activation energy obtained from the modulus spectra and conductivity confirm that the transport happens through a proton-hopping mechanism, dominated by the motion of the proton H+ in the structure of the investigated materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Haile SM, Boysen DA, Chisholm CRI, Merle RB (2001) Solid acids as fuel cell electrolytes. Nature 410:910–913

    Article  CAS  Google Scholar 

  2. Haile SM, Chisholm CRI, Sasaki K, Boysen DA, Uda T (2007) Solid acid proton conductors: from laboratory curiosities to fuel cell electrolytes. Faraday Discuss 134:17–39

    Article  CAS  Google Scholar 

  3. Ginder RS, Pharr GM (2017) Creep behavior of the solid acid fuel cell material CsHSO 4. Scr Mater 139:119–121

    Article  CAS  Google Scholar 

  4. Colomban P (1992) Proton conductors: solids, membranes and gels—materials and devices. Cambridge University Press, Cambridge

  5. Goñi-Urtiaga A, Presvytes D, Scott K (2012) Solid acids as electrolyte materials for proton exchange membrane (PEM) electrolysis: Review. Int J Hydrog Energy 37:3358–3372

    Article  Google Scholar 

  6. Castillo J, Materón EM, Castillo R, Vargas RA, Bueno PR, Varela JA (2008) Electrical relaxation in proton conductor composites based on (NH4)H2PO4/TiO2. Ionics 15:329–336

    Article  Google Scholar 

  7. Cotton FA, Frenz BA, Hunter DL (1975) The structure of potassium hydrogen sulfate. Acta Crystallogr Sec B Struct Crystallogr Cryst Chem 31(1):302–330

    Article  Google Scholar 

  8. Moskvich YN, Rozanov OV, Sukhovsky AA, Aleksandrova IP (2011) The study of phase transitions in crystals of ammonium hydrogen selenate family. Ferroelectrics 63(1):83–89

    Article  CAS  Google Scholar 

  9. Rozanov OV, Moskvich YN, Sukhovskii AA (1983) The SE-77 High-Resolution NMR study of ferroelectric phase-transition in RBHSEO3. Fizika Tverdogo tela 25(2):376–380

  10. Sukhovsky AA, Moskvich YN, Rozanov OV, Aleksandrova IP (2006) Polymorphism of the highly deuterated ammonium hydrogen selenate. Ferroelectr Lett Sect 3(2):45–52

    Article  Google Scholar 

  11. Boysen DA (2004) High-performance solid acid fuel cells through humidity stabilization. Science 303:68–70

    Article  CAS  Google Scholar 

  12. Soboleva LV, Voloshin AÉ (2002) Growth of single crystals of NaH2PO4 (NaDP), NaH2PO4 · H2O (NaDP · H2O), and NaH2PO4 · 2H2O (NaDP · 2H2O) sodium dihydrogenphosphate based on the analysis of the Na2O-P2O5-H2O phase diagram. Crystallography Reports 47:871–878

  13. Zhang X, Liu C, Shen W, Ren Y, Li D, Yang H (2015) Solubility and physic-chemical properties of NaH2PO4 in phosphoric acid, sodium chloride and their mixture solutions at T=(298.15 and 313.15)K. J Chem Thermodyn 90:185–192

    Article  CAS  Google Scholar 

  14. Catti M, Ferraris G (1974) Hydrogen bonding in the crystalline state. NaH2PO4, a crystal structure with a short symmetrical hydrogen bond. Acta Crysrallogr Sect B 30:1–6

    Article  CAS  Google Scholar 

  15. Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71.

    Article  CAS  Google Scholar 

  16. Rodriguez-Carvajal J (1993) Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192:55–69

    Article  Google Scholar 

  17. Collins T (2011) Optical and Digital Image Processing. 859–877

    Chapter  Google Scholar 

  18. Nasrin S, Manjura Hoque S, Chowdhury F-U-Z, Moazzam Hossen M (2014) IOSR. Influence of Zn substitution on the structural and magnetic properties of Co1-xZnxFe2O4 nano-ferrites. J Appl Phys 6:58–65

    Google Scholar 

  19. M'nassri R, Chniba Boudjada N, Cheikhrouhou A (2015) Impact of sintering temperature on the magnetic and magnetocaloric properties in Pr0.5Eu0.1Sr0.4MnO3 manganites. J Alloys Compd 626:20–28

    Article  CAS  Google Scholar 

  20. Ungár T, Tichy G, Gubicza J, Hellmig RJ (2005) Correlation between subgrains and coherently scattering domains. Powder Diffract 20:366–375

    Article  Google Scholar 

  21. Intatha U, Eitssayeam S, Wang J, Tunkasiri T (2010) Impedance study of giant dielectric permittivity in BaFe0.5Nb0.5O3 perovskite ceramic. J Curr Appl Phys 10:21–25

    Article  Google Scholar 

  22. Abbassi M, Ternane R, Sobrados I, Madani A, Trabelsi-Ayadi M, Sanz J (2013) Ionic conductivity of apatite-type solid electrolyte ceramics Ca2−xBaxLa4Bi4(SiO4)6O2 (0≤x≤2). Ceram Int 39:9215–9221

  23. Bechir MB, Karoui K, Tabellout M, Guidara K, Rhaiem AB (2014) Electric and dielectric studies of the [N(CH3)3H]2CuCl4 compound at low temperature. J Alloys Compd 588:551–557

  24. Jonscher AK (1975) The Interpretation of Non-Ideal Dielectric Admittance and Impedance Diagrams. Phys State Sol (A) 32:665–667

    Article  CAS  Google Scholar 

  25. Das BP, Choudhary RNP, Matapattra PK (2008) Impedance spectroscopy analysis of (Pb0.93 Gd 0.07)(Sn0.45Ti0.55)0.9825Oferroelectrics. Ind J Eng Mat Sci 15:152

  26. Ram M (2010) A.c. conductivity and dielectric properties of LiNi3/5Cu2/5VO4 ceramics. Phys B 405:1359–1361

  27. Lin YQ, Wu YJ, Chen XM, Gu SP, Tong J, Guan S (2009) Dielectric relaxation mechanisms of BiMn2O5 ceramics. J Appl Phys 105(5):05410

  28. Chatterjee S, Mahapatra PK, Choudhary RNP, Thakur AK (2004). Complex impedance studies of sodium pyrotungstate– Na2W2O7. Phys Status Solid A 201:588–595

  29. Chandra KP, Prasad K, Gupta RN (2007) Impedance spectroscopy study of an organic semiconductor: Alizarin. Phys B Condens Matter 388:118–123

    Article  CAS  Google Scholar 

  30. Jonscher AK (1996) Universal relaxation law: a sequel to Dielectric relaxation in solids. Universal relaxation law. Chelsea Dielectric Press, London

  31. Jonscher AK (1983) Dielectric relaxation in solids. Chelsea Dielectric Press, London

  32. Elliott SR (1987) A.c. conduction in amorphous chalcogenide and pnictide semiconductors. Adv Phys 36:135–217

    Article  CAS  Google Scholar 

  33. Howe AT, Shilton MG (1979) Studies of layered uranium (VI) compounds. I. High proton conductivity in polycrystalline hydrogen uranyl phosphate tetrahydrate. J Solid State Chem 28:345–361

    Article  CAS  Google Scholar 

  34.  Schechter A (2002) Imidazole and 1-methyl imidazole in phosphoric acid doped polybenzimidazole, electrolyte for fuel cells. Solid State Ionics 147:181–187

    Article  CAS  Google Scholar 

  35. Diosa JE, Vargas RA, Albinsson I, Mellander B-E (2004) Dielectric relaxation of KH2PO4 above room temperature. Phys Status Solid B 241:1369–1375

    Article  CAS  Google Scholar 

  36. Rhimi T, Leroy G, Duponchel B, Khirouni K, Guermazi S, Toumi M (2017). AC and DC conductivity study of LiH2PO4 compound using impedance spectroscopy. Ionics 1–8

  37. T. Rhimi, M. Toumi, Kamel Khirouni, S. Guermazi, (2017) AC conductivity, electric modulus analysis of KLi(H2PO4)2 compound. Journal of Alloys and Compounds 714:546–552

  38. Ye Y, Guo W, Wang L, Li Z, Song Z, Chen J, Zhang Z, Xiang S, Chen B (2017) Straightforward loading of imidazole molecules into metal–organic framework for high proton conduction. J Am Chem Soc 139:15604–15607

    Article  CAS  Google Scholar 

  39. Ye Y, Zhang L, Peng Q, Wang G-E, Shen Y, Li Z, Wang L, Ma X, Chen Q-H, Zhang Z, Xiang S (2015) High Anhydrous Proton Conductivity of Imidazole-Loaded Mesoporous Polyimides over a Wide Range from Subzero to Moderate Temperature. J Am Chem Soc 137(2):913–918

    Article  CAS  Google Scholar 

  40. Ye Y, Wu X, Yao Z, Wu L, Cai Z, Wang L, Ma X, Chen Q-H, Zhang Z, Xiang S (2016) Metal–organic frameworks with a large breathing effect to host hydroxyl compounds for high anhydrous proton conductivity over a wide temperature range from subzero to 125 °C. J Mater Chem A 4:4062–4070

    Article  CAS  Google Scholar 

  41. Kumari K, Prasad A, Prasad K (2016) impedance/modulus and conductivity studies on [Bi 0.5(Na 1-x Kx) 0.5] 0.94 Ba 0.06 TiO 3, (0.16≤ x≤ 0.20) lead-free ceramics. J Mat Sci 6:1–18

  42. Migahed MD, Bakr NA, Abdel-Hamid MI, El-Hanafy O, El Nimr M (1996) Dielectric relaxation and electric modulus behavior in poly(vinyl alcohol)-based composite systems. J Appl Polym Sci 59:655–662

    Article  CAS  Google Scholar 

  43. Saha S, Sinha TP (2005) Low-temperature scaling behavior of BaFe0.5Nb0.5O3. Phys Rev B 65:13

  44. Padmasree KP, Kanchan DD, Kulkami AR (2006) Impedance and modulus studies of the solid electrolyte system 20CdI2–80[xAg20–y(0.7V2O50.3B2O3)], where 1≤x/y≤3. Solid State Ionics 177:475–482

  45. Elliott SR (1988) Frequency-dependent conductivity in ionic glasses: a possible model. Solid State Ionics 27:131–149

    Article  Google Scholar 

  46. Barik SK, Choudhary RNP, Singh AK (2011) Ac impedance spectroscopy and conductivity studies of Ba0.8Sr0.2TiO3 ceramics. Adv Mat Lett 2:419–421

  47. Bergman R (2000) General susceptibility functions for relaxations in disordered systems. J Appl Phys 88:1356–1365

    Article  CAS  Google Scholar 

  48. Cao MS, Hou ZL, Yuan J, Xiong LT, Shi XL (2009) Low dielectric loss and non-Debye relaxation of gamma-Y2Si2O7 ceramic at elevated temperature in X-band. J Appl Phys 105:106102

  49. Nasri S, Megdiche M, Gargouri M (2016) The investigation of dielectric properties and ac conductivity of new ceramic diphosphate Ag 0.6 Na 0.4 FeP 2O 7 using impedance spectroscopy method. Physica E: Low-dimensional Systems and Nanostructures 84:182–190

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Rhimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rhimi, T., Leroy, G., Duponchel, B. et al. Electrical conductivity and dielectric analysis of NaH2PO4 compound. Ionics 24, 3507–3514 (2018). https://doi.org/10.1007/s11581-018-2494-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2494-6

Keywords

Navigation