Skip to main content
Log in

Solid polymer electrolytes in a poly(butadiene-acrylonitrile)–LiBr system

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Poly(nitriles) are among the polymer matrices providing high salt solubility and, in some cases, superionic lithium conductivity at ambient temperatures observed in highly concentrated solvent-free polymer electrolytes. However, the properties of these electrolytes in which ionic aggregation prevails remain difficult to reproduce and predict, as current theories do not adequately model their attributes. The development of new concepts for ion transport in highly concentrated solid polymer electrolytes (SPEs) requires a better understanding of the fundamentals of structure formation in a polymer–salt system over a wide concentration range including salt precipitation. In an attempt to approach this goal, a series of fundamental studies was carried out on the systems based on a rubbery random copolymer of butadiene and acrylonitrile (abbreviated as PBAN). In the present work, LiBr with monatomic halide anion was used as a lithium salt. The effect of LiBr concentration (0.05 to 3.35 mol kg−1) on phase composition, ion–molecular interactions, glass transition temperature, and ionic conductivity was studied by optical microscopy, FTIR, X-ray diffraction, DSC, and impedance measurements. The results were compared with those of PBAN–LiClO4 and PBAN–LiAsF6 studied previously. Low salt solubility and separation of a metastable cubic CsCl-type polymorph of LiBr were established. The highest conductivity of ∼10−4 S cm−1 at >50 °C was observed for heterogeneous samples comprising this phase. While the conductivity of PBAN–LiBr was lower than that of PBAN–LiClO4 and PBAN–LiAsF6, this study provides a new insight into the nature of polymer electrolyte systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    Article  CAS  Google Scholar 

  2. Quartarone E, Mustarelli P (2011) Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem Soc Rev 40:2525–2540

    Article  CAS  Google Scholar 

  3. Marcinek M, Syzdek J, Marczewski M, Piszcz M, Niedzicki L, Kalita M, Plewa-Marczewska A, Bitner A, Wieczorek P, Trzeciak T, Kasprzyk M, Łężak P, Zukowska Z, Zalewska A, Wieczorek W (2015) Electrolytes for Li-ion transport—review. Solid State Ionics 276:107–126

    Article  CAS  Google Scholar 

  4. Gray FM (1991) Solid polymer electrolytes: fundamentals and technological applications. VCH Publishers, New York

    Google Scholar 

  5. Gray F, Armand M (1999) Polymer electrolytes. In: Besenhard JO (ed) Handbook of battery materials. Wiley-VCH, Weinheim, pp 627–656

    Google Scholar 

  6. Andreev YG, Bruce PG (2000) Polymer electrolyte structure and its implications. Electrochim Acta 45:1417–1423

    Article  CAS  Google Scholar 

  7. Ngai KS, Ramesh S, Ramesh K, Juan JC (2016) A review of polymer electrolytes: fundamental, approaches and applications. Ionics 22:1259–1279

    Article  CAS  Google Scholar 

  8. Burjanadze M, Karatas Y, Kaskhedikar N, Kogel LM, Kloss S, Gentschev AC, Hiller MM, Müller RA, Stolina R, Vettikuzha P, Wiemhöfer HD (2010) Salt-in-polymer electrolytes for lithium ion batteries based on organo-functionalized polyphosphazenes and polysiloxanes. Z Phys Chem 224:1439–1473

    Article  CAS  Google Scholar 

  9. Bushkova OV, Zhukovsky VM, Lirova BI, Kruglyashov AL (1999) Fast ionic transport in solid polymer electrolytes based on polyacrylonitrile copolymers. Solid State Ionics 119:217–222

    Article  CAS  Google Scholar 

  10. Yoon HK, Chung WS, Jo NJ (2004) Study on ionic transport mechanism and interactions between salt and polymer chain in PAN based solid polymer electrolytes containing LiCF3SO3. Electrochim Acta 50:289–293

    Article  CAS  Google Scholar 

  11. Florjańczyk Z, Zygadło-Monikowska E, Wieczorek W, Ryszawy A, Tomaszewska A, Fredman K, Golodnitsky D, Peled E, Scrosati B (2004) Polymer-in-salt electrolyte based on acrylonitrile/butyl acrylate copolymers and lithium salts. J Phys Chem B 108:14907–14914

    Article  Google Scholar 

  12. Bushkova OV, Iye A, Lirova BI, Zhukovsky VM (1997) Lithium conducting solid polymer electrolytes based on polyacrylonitrile copolymers: ion solvation and transport properties. Ionics 3:396–404

    Article  CAS  Google Scholar 

  13. Bushkova OV, Popov SE, Yaroslavtseva TV, Zhukovsky VM, Nikiforov AE (2008) Ion-molecular and ion-ion interactions in solvent-free polymer electrolytes based on amorphous butadiene–acrylonitrile copolymer and LiAsF6. Solid State Ionics 178:1817–1830

    Article  CAS  Google Scholar 

  14. Yaroslavtseva TV, Bushkova OV (2011) Glass transitions and ionic conductivity in poly(butadiene-acrylonitrile)–LiAsF6 system. Electrochim Acta 57:212–219

    Article  CAS  Google Scholar 

  15. Bushkova OV, Lirova BI, Zhukovskii VM, Tyutyunnik AP, Popova OY (2003) Phase equilibria in acrylonitrile–butadiene copolymer–lithium hexafluoroarsenate systems. Russ J Phys Chem 77(1):5–8

    Google Scholar 

  16. Bushkova OV, Lirova BI, Zhukovskii VM, Tyutyunnik AP, Pivovarova NV (2002) Phase equilibria in the system poly(butadiene-co-acrylonitrile)–lithium perchlorate. Electrochem Energetics 2(3):116–120 (in Russian)

    Google Scholar 

  17. Bushkova OV, Sofronova TV, Lirova BI, Zhukovskii VM (2005) Ionic transport in dilute solid polymer electrolytes with amorphous structure. Russ J Electrochem 41:468–475

    Article  CAS  Google Scholar 

  18. Bushkova OV, Yaroslavtseva TV, Zhukovskii VM (2007) Separation of cationic and anionic conductivity constituents in solid polymer electrolytes comprising a copolymer of acrylonitrile and butadiene (40:60) and lithium hexafluoroarsenate. R J Electrochem 43:410–417

    Article  CAS  Google Scholar 

  19. Fenton DE, Parker JM, Wright PV (1973) Complexes of alkali metal ions with poly(ethylene oxide). Polymer 14:589

    Article  CAS  Google Scholar 

  20. Armand MB, Chabagno JM, Duclot MJ (1979) In: Vashista P, Mundy JN, Shenoy GK (eds) Fast ion transport in solids. Elsevier, Amsterdam, pp 131–136

    Google Scholar 

  21. Di Noto V, Lavina S, Giffin GA, Negro E, Scrosati B (2011) Polymer electrolytes: present, past and future. Electrochim Acta 57:4–13

    Article  CAS  Google Scholar 

  22. Arya A, Sharma AL (2017) Polymer electrolytes for lithium ion batteries: a critical study. Ionics 23:497–540

    Article  CAS  Google Scholar 

  23. Grünebaum M, Hiller MM, Jankowsky S, Jeschke S, Pohl B, Schürmann T, Vettikuzha P, Gentschev AC, Stolina R, Müller R, Wiemhöfer HD (2014) Synthesis and electrochemistry of polymer based electrolytes for lithium batteries. Prog Solid State Chem 42:85–105

    Article  Google Scholar 

  24. Fergus JW (2010) Ceramic and polymeric solid electrolytes for lithium-ion batteries. J Power Sources 195:4554–4569

    Article  CAS  Google Scholar 

  25. Mendolia M, Cai H, Farrington GC (1993) Solvation mechanisms in low molecular weight polyethers. In: Scrosati B (ed) Applications of electroactive polymers. Chapman & Hall, London, pp 113–149

    Chapter  Google Scholar 

  26. Neyertz S, Brown D (1996) Local structure and mobility of ions in polymer electrolytes: a molecular dynamics simulation study of the amorphous PEOxNaI system. J Chem Phys 104:3797–3809

    Article  CAS  Google Scholar 

  27. Ratner MA (1987) Aspects of the theoretical treatment of polymer solid electrolytes: transport theory and models. In: MacCallum JR, Vincent CA (eds) Polymer electrolyte review-1. Elsevier, London, pp 173–236

    Google Scholar 

  28. Fauteux D (1989) Phase equilibria. In: MacCallum JR, Vincent CA (eds) Polymer electrolyte review-2. Elsevier, London, pp 121–155

    Google Scholar 

  29. Henderson WA, Brooks NR (2003) Crystals from concentrated glyme mixtures. The single-crystal structure of LiClO4. Inorg Chem 42:4522–4524

    Article  CAS  Google Scholar 

  30. Henderson WA (2006) Glyme-lithium salt phase behavior. J Phys Chem B 110:13177–13183

    Article  CAS  Google Scholar 

  31. Berthier C, Gorecki W, Minier M (1983) Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts. Solid State Ionics 11:91–95

    Article  CAS  Google Scholar 

  32. Srivastava N, Tiwari T (2009) New trends in polymer electrolytes: a review. E-Polymers 9(1):1738–1754

    Google Scholar 

  33. Suthanthiraraj SA, Johnsi M (2016) Nanocomposite polymer electrolytes. Ionics. doi:10.1007/s11581-016-1924-6

  34. Munshi MZA, Owens BB (1988) Ionic transport in poly(ethylene oxide) (PEO)-LiX polymeric solid electrolyte. Polym J 20:577–586

    Article  CAS  Google Scholar 

  35. Angell CA, Liu C, Sanchez E (1993) Rubbery solid electrolytes with dominant cationic transport and high ambient conductivity. Nature 362:137–139

    Article  CAS  Google Scholar 

  36. Pożyczka K, Marzantowicz M, Dygas JR, Krok F (2017) Ionic conductivity and lithium transference number of poly(ethylene oxide):LiTFSI system. Electrochim Acta 227:127–135

    Article  Google Scholar 

  37. Linford RG (1993) Electrical and electrochemical properties of ion conducting polymers. In: Scrosati B (ed) Applications of electroactive polymers. Chapman & Hall, London-Glasgo-New York-Tokio_Melbourne-Madras, pp 1–28

  38. Cowie JMG (1987) Conductivity in non-main chain oxide systems and some linear analogues. In: MacCallum JR, Vincent CA (eds) Polymer electrolyte review-1. Elsevier, London-New York, pp 69–102

    Google Scholar 

  39. Tang MX, WangH LYG, TakedaY YO, Xu J, Yuan A, Imanishi N (2016) Electrochemical and mechanical properties of polyolefin hard segment with polyethylene oxide conductive phase block copolymers. Solid State Ionics 289:188–193

    Article  CAS  Google Scholar 

  40. Rocco AM, Pereira RP (2015) Solid electrolytes based on poly(ethylene oxide)/poly(4-vinyl phenol-co-2-hydroxyethyl methacrylate) blends and LiClO4. Solid State Ionics 279:78–89

    Article  CAS  Google Scholar 

  41. Itoh T, Fujita K, Uno T, Kubo M (2017) Polymer electrolytes based on vinyl ethers with various EO chain length and their polymer electrolytes cross-linked by electron beam irradiation. Ionics 23:257–264

    Article  CAS  Google Scholar 

  42. Marzantowicz M, Dygas JR, Krok F, Florjańczyk Z, Zygadło-Monikowska E, Lapienis G (2011) Ionic conductivity of electrolytes based on star-branched poly(ethylene oxide) with high concentration of lithium salts. Solid State Ionics 192:137–114

    Article  CAS  Google Scholar 

  43. Polu AR, Kim DK, Rhee HW (2015) Poly(ethylene oxide)-lithium difluoro(oxalato)borate new solid polymer electrolytes: ion–polymer interaction, structural, thermal, and ionic conductivity studies. Ionics 21:2771–2780

    Article  CAS  Google Scholar 

  44. Rossia NAA, West R (2009) Silicon-containing liquid polymer electrolytes for application in lithium ion batteries. Polym Int 58:267–272

    Article  Google Scholar 

  45. Jankowsky S, Hiller MM, Wiemhöfer HD (2014) Preparation and electrochemical performance of polyphosphazene based salt-in-polymer electrolyte membranes for lithium ion batteries. J Power Sources 253:256–262

    Article  CAS  Google Scholar 

  46. Fonteca CP, Neves S (2002) Characterization of polymer electrolytes based on poly(dimethyl siloxane-co-ethylene oxide). J Power Sources 104:85–89

    Article  Google Scholar 

  47. Angell CA, Fan J, Liu C, Lu Q, Sanchez E, Xu K (1994) Li-conducting ionic rubbers for lithium battery and other applications. Solid State Ionics 69:343–353

    Article  CAS  Google Scholar 

  48. Sørensen PR, Jacobsen T (1982) Conductivity charge transfer and transport number—an AC-investigation of the polymer electrolyte LiSCN–poly(ethylene oxide). Electrochem Acta 27:1671–1675

    Article  Google Scholar 

  49. Bruce PG (1987) Electrical measurements on polymer electrolytes. In: MacCallum JR, Vincent CA (eds) Polymer electrolyte review-1. Elsevier, London and New York, pp 237–274

    Google Scholar 

  50. Doyle M, Fuller TF, Newman J (1994) The importance of the lithium ion transference number in lithium/polymer cells. Electrochim Acta 39:2073–2081

    Article  CAS  Google Scholar 

  51. Angell CA, Imrie CT, Ingram MD (1998) From simple electrolyte solutions through polymer electrolytes to superionic rubbers: some fundamental considerations. Polym Int 47:9–15

    Article  CAS  Google Scholar 

  52. Feng L, Cui H (1996) A new solid-state electrolyte: rubbery ‘polymer-in-salt’ containing LiN( CF3SO2)2. J Power Sources 63:145–148

    Article  CAS  Google Scholar 

  53. Angell CA, Xu K, Zhang S-S, Videa M (1996) Variations on the salt-polymer electrolyte theme for flexible solid electrolytes. Solid State Ionics 86-88:17–28

    Article  CAS  Google Scholar 

  54. Forsyth M, MacFarlane DR, Hill AJ (2000) Glass transition and free volume behaviour of poly(acrylonitrile)/LiCF3SO3 polymer-in-salt electrolytes compared to poly(ether urethane)/LiClO4 solid polymer electrolytes. Electrochim Acta 45:1243–1247

    Article  CAS  Google Scholar 

  55. Forsyth M, Jiazeng S, MacFarlane DR (2000) Novel high salt content polymer electrolytes based on high Tg polymers. Electrochim Acta 45:1249–1254

    Article  CAS  Google Scholar 

  56. Ferry A, Edman L, Forsyth M, MacFarlane DR, Sun J (2000) NMR and Raman studies of a novel fast-ion-conducting polymer-in-salt electrolyte based on LiCF3SO3 and PAN. Electrochim Acta 45:1237–1242

    Article  CAS  Google Scholar 

  57. Forsyth M, Sun J, MacFarlane DR (1998) Novel polymer-in-salt electrolytes based on polyacrylonitrile (PAN)-lithium triflate salt mixture. Solid State Ionics 112:161–163

    Article  CAS  Google Scholar 

  58. Every NA, Zhou F, Forsyth M, MacFarlane DR (1998) Lithium ion mobility in poly(vinyl alcohol) base polymer electrolytes as determined by 7Li NMR spectroscopy. Electrochim Acta 43:1465–1469

    Article  CAS  Google Scholar 

  59. Saunier J, Alloin F, Sanchez JY (2000) Electrochemical and spectroscopic studies of polymethacrylonitrile based electrolytes. Electrochim Acta 45:1255–1263

    Article  CAS  Google Scholar 

  60. Saunier J, Chaux N, Alloin F, Belieres JP, Sanchez JY (2002) Electrochemical study of polymethacrylonitrile electrolytes. Conductivity study of polymer/salt complexes and plasticized polymer electrolytes. Part I. Electrochim Acta 47:1321–1326

    Article  CAS  Google Scholar 

  61. Zalewska A, Pruszczyk I, Sulek E, Wieczorek W (2003) New poly(acrylamide) based (polymer in salt) electrolytes: preparation and spectroscopic characterization. Solid State Ionics 157:233–239

    Article  CAS  Google Scholar 

  62. Shimomoto H, Uegaito T, Yabuki S, Teratani S, Itoh T, Ihara E, Hoshikawa N, Koiwai A, Hasegaw N (2016) Lithium ion conductivity of polymers containing N-phenyl-2,6-dimethoxybenzamide framework in their side chains: possible role of bond rotation in polymer side chain substituents for efficient ion transport. Solid State Ionics 292:1–7

    Article  CAS  Google Scholar 

  63. Genova FKM, Selvasekarapandian S, Vijaya N, Sivadevi S, Premalatha M, Karthikeyan S (2017) Lithium ion-conducting polymer electrolytes based on PVA–PAN doped with lithium triflate. Ionics. doi:10.1007/s11581-017-2052-7

  64. Tominaga Y, Yamazaki K (2014) Fast Li-ion conduction in poly(ethylene carbonate)-based electrolytes and composites filled with TiO2 nanoparticles. Chem Commun 50:4448–4450

    Article  CAS  Google Scholar 

  65. Silva MM, Barros SC, Smith MJ, MacCallum JR (2004) Characterization of solid polymer electrolytes based on poly(trimethylenecarbonate) and lithium teterafluoroborate. Electrochim Acta 49:1887–1891

    Article  CAS  Google Scholar 

  66. Łasińska AK, Marzantowicz M, Dygas JR, Krok F, Florjańczyk Z, Tomaszewska A, Zygadło-Monikowska E, Żukowska Z, Lafont U (2015) Study of ageing effects in polymer-in-salt electrolytes based on poly(acrylonitrile-co-butyl acrylate) and lithium salts. Electrochim Acta 169:61–72

    Article  Google Scholar 

  67. Florjańczyk Z, Zygadło-Monikowska E, Affek A, Tomaszewska A, Łasińska A, Marzantowicz M, Dygas JR, Krok F (2005) Polymer electrolytes based on acrylonitrile–butyl acrylate copolymers and lithium bis(trifluoromethanesulfone)imide. Solid State Ionics 176:2123–2128

    Article  Google Scholar 

  68. Le Nest JF, Candini A, Cheradame H (1988) Crosslinked polyethers as media for ionic conduction. Brit Polym J 20:253–268

    Article  CAS  Google Scholar 

  69. Cowie JMG, Martin ACS, Firth A-M (1988) Ionic conductivity in mixtures of salts with comb-shaped polymers based on ethylene oxide macromers. Brit Polym J 20:247–252

    Article  CAS  Google Scholar 

  70. Torell LM, Jacobsson P, Sidebottom D, Petersen G (1992) The importance of ion-polymer crosslinks in polymer electrolytes. Solid State Ionics 53–56:1037–1043

    Article  Google Scholar 

  71. Kaskhedikar N, Paulsdorf J, Burjanadze M, Karatas Y, Wilmer D, Roling B, Wiemhöfer HD (2006) Ionic conductivity of polymer electrolyte membranes based on polyphosphazene with oligo(propylene oxide) side chains. Solid State Ionics 177:703–707

    Article  CAS  Google Scholar 

  72. Ollivrin X, Farin N, Alloin F, Le Nest JF, Sanchez JY (1998) Physical properties of amorphous polyether networks. Electrochim Acta 43:1257–1262

    Article  CAS  Google Scholar 

  73. Saunier J, Alloin F (2005) Block polymethacrylonitrile copolymers based on a central polyether or polyacetal block: a study of the salt/copolymer complexes. J Polym Sci B Polym Phys 43:3665–3673

    Article  CAS  Google Scholar 

  74. Nava DP, Guzmán G, Vazquez-Arenas J, Cardoso J, Gomez B, Gonzalez I (2016) An experimental and theoretical correlation to account for the effect of LiPF6 concentration on the ionic conductivity of poly(poly (ethylene glycol) methacrylate). Solid State Ionics 290:98–107

    Article  CAS  Google Scholar 

  75. He W, Cui Z, Liu X, Cui Y, Chai J, Zhou X, Liu Z, Cui G (2017) Carbonate-linked poly(ethylene oxide) polymer electrolytes towards high performance solid state lithium batteries. Electrochim Acta 225:151–159

    Article  CAS  Google Scholar 

  76. Pesko DM, Jung Y, Hasan AL, Webb MA, Coates GW, Miller TF, Balsara NP (2016) Effect of monomer structure on ionic conductivity in a systematic set of polyester electrolytes. Solid State Ionics 289:118–124

    Article  CAS  Google Scholar 

  77. Rodriguez-Carvajal J (1993) Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192:55–69

    Article  CAS  Google Scholar 

  78. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Recent advances in magnetic structure determination by neutron powder diffraction. J Chem Phys 72:650–654

    Article  CAS  Google Scholar 

  79. Curtiss LA, McGrath MP, Blandeau JP, Davis NE, Binning R, Radom JL (1995) Extension of Gaussian-2 theory to molecules containing third-row atoms Ga–Kr. J Chem Phys 103:6104–6113

    Article  CAS  Google Scholar 

  80. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396

    Article  CAS  Google Scholar 

  81. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  82. Granovsky AA. Firefly version 8. www http://classic.chem.msu.su/gran/firefly/index.html

  83. Erkabaev AM, Yaroslavtseva TV, Popov SE, Bushkova OV (2014) FTIR and quantum chemical study of LiBr solvation in acetonitrile solutions. Vib Spectrosc 75:19–25

    Article  CAS  Google Scholar 

  84. Kargin VA (ed) (1972) Entsiklopedija polymerov (encyclopedia of polymers), vol vol. 3. Sovetskaya Entsiklopedija, Moscow, p 310 (in Russian)

    Google Scholar 

  85. Marqués M, Flórez M, Blanco MA, Recio JM (2003) Role of polarization effects in the prediction of an orthorhombic pressure-induced phase in alkali halides. Phys Rev B 68:014110

    Article  Google Scholar 

  86. Čančarević ŽP, Schön JC, Jansen M (2008) Stability of alkali metal halide polymorphs as a function of pressure. Chem Asian J 3:561–572

    Article  Google Scholar 

  87. Liebold-Ribeiro Y, Fischer D, Jansen M (2008) Experimental substantiation of the “energy landscape concept” for solids: synthesis of a new modification of LiBr. Angew Chem 120:4500–4503

    Article  Google Scholar 

  88. West AR (1984) Solid state chemistry and its applications, 1st edn. Wiley, Chichester

    Google Scholar 

  89. Krestov GA, Novoselov NP, Perelygin IS (1994) Ionic solvation. Ellis Horwood, New York

    Google Scholar 

  90. Ramana KV, Singh S (1989) Raman spectral studies on interactions of Br-ions with CD3 group of acetonitrile, nitromethane and dimethylsulfoxide. J Mol Struct 194:73–82

    Article  CAS  Google Scholar 

  91. Kunz W, Barthel J, Klein L, Cartailler T, Turq P, Reindl B (1991) Lithium bromide in acetonitrile: thermodynamics, theory, and simulation. J Solut Chem 20:875–891

    Article  CAS  Google Scholar 

  92. Cartailler T, Kunz W, Turq P, Bellisent-Funel MC (1991) Lithium bromide in acetonitrile and water: a neutron scattering study. J Phys Condens Matter 3:9511–9520

    Article  CAS  Google Scholar 

  93. Ayala R, Martґınez JM, Pappalardo RR, Marcos ES (2000) Theoretical study of the microsolvation of the bromide anion in water, methanol, and acetonitrile: ion-solvent vs solvent-solvent interactions. J Phys Chem A104:2799–2807

    Article  Google Scholar 

  94. Markovich G, Perera L, Berkowitz ML, Cheshnovsky O (1996) The solvation of Cl−, Br−, and I− in acetonitrile clusters: photoelectron spectroscopy and molecular dynamics simulations. J Chem Phys 105:2675–2685

    Article  CAS  Google Scholar 

  95. Megyes T, Radnai T, Wakisaka A (2003) A mass spectrometric study of solvated clusters of ions and ion pairs generated from lithium halide solutions in polar solvents: acetonitrile compared to methanol. J Mol Liq 103–104:319–329

    Article  Google Scholar 

  96. Perron G, Couture L, Lambert D, Desnoyers J (1993) Phase diagrams, molar volumes, heat capacities, conductivities and viscosities of some lithium salts in aprotic solvents. J Electroanal Chem 355:277–296

    Article  CAS  Google Scholar 

  97. Kilroy WP (1977) Solubility and solvate formation of lithium hexafluoroarsenate in acetonitrile. J Solut Chem 6:487–490

    Article  CAS  Google Scholar 

  98. Tomkins HPT, Turner PJ (1975) Solubility and solvate formation of lithium perchlorate in lower nitriles. J Chem Eng Data 20:50–52

    Article  CAS  Google Scholar 

  99. Seo DM, Borodin O, Han SD, Ly Q, Boyle PD, Henderson WA (2012) Electrolyte solvation and ionic association. I. Acetonitrile-lithium salt mixtures: intermediate and highly associated salts. J Electrochem Soc 159:A553–A565

    Article  CAS  Google Scholar 

  100. Coleman MM, Petcavich RJ (1978) Fourier transform infrared studies on thermal degradation of polyacrylonitrile. J Polym Sci B Polym Phys Ed 16:821–832

    Article  CAS  Google Scholar 

  101. Zil’berman EN (1986) The reactions of nitrile-containing polymers. Russ Chem Rev 55:39–48

    Article  Google Scholar 

  102. Andreeva OA, BurkovaLA BMO (1995) Effect of molecular mass on the character of thermal transformations in polyacrylonitrile. Polym Sci Ser A 37:591–594

    Google Scholar 

  103. Uvarov NF, Hairetdinov EF, Boldyrev VV (1984) The correlation between the melting parameters and the conductivities of solid ionic compounds. Isvestiya Sibirskogo Otd AN SSSR, Ser Khim 2:3–12 (in Russian)

    Google Scholar 

Download references

Acknowledgements

The study was supported by Ministry of Education and Science Agreement no. 14.604.21.0125 (unique identifier: RFMEFI60414X0125). This work has been (partly) done using facilities of the shared access centre “Composition of compounds”, Institute of High-Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences. Quantum chemical calculations were performed using the “URAN” cluster platform of the Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences. The authors are grateful to Dr. B.D. Antonov for the recording of XRD patterns and Prof. P.E. Panfilov for the optical microscopy images of the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Bushkova.

Electronic supplementary material

ESM 1

(PDF 328 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaroslavtseva, T.V., Reznitskikh, O.G., Sherstobitova, E.A. et al. Solid polymer electrolytes in a poly(butadiene-acrylonitrile)–LiBr system. Ionics 23, 3347–3363 (2017). https://doi.org/10.1007/s11581-017-2149-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2149-z

Keywords

Navigation