Skip to main content
Log in

Enhanced conductivity and electrical relaxation studies of carbon-coated LiMnPO4 nanorods

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Lithium manganese phosphate (LiMnPO4) nanorods were synthesized using the modified polyol method. Polyvinylpyrrolidone was used as a stabilizer to control the shape and size of LiMnPO4 nanorods. Resin coating process was used to coat the carbon over the LiMnPO4 nanorods. X-ray diffraction and Fourier transform infrared spectroscopy results showed the formation of LiMnPO4 crystalline phase. The TEM image shows a uniform coating of the nano size (2.3 nm) carbon over the surface of LiMnPO4 nanorods and the EDS spectrum of the carbon-coated LiMnPO4 nanorods confirming the presence of carbon element along with the other Mn, P, and O elements. Impedance measurements were made on pure and carbon-coated LiMnPO4 nanorods, and their conductivities were evaluated by analyzing the measured impedance data using the WinFIT software. More than two orders of magnitude of conductivity enhancement was observed in the carbon-coated LiMnPO4 nanorods compared to pure ones, and the conductivity enhancement may be attributed to the presence of carbon over LiMnPO4 nanorods. Temperature dependence of conductivity and ac conductivity were calculated using impedance data of pure and carbon-coated LiMnPO4 nanorods. CR2032 type lithium ion coin cells were fabricated using pure and carbon-coated LiMnPO4 nanorods and characterized by measuring charge–discharge cycles between 2.9 and 4.5 V at room temperature. More than 25 % of improved capacity was achieved in the carbon-coated LiMnPO4 nanorods when compared to pure ones synthesized using modified polyol and resin coating processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Nazri A, Pistoia G (2004) Lithium batteries: science and technology. Kluwer, Boston

    Google Scholar 

  2. Scrosati B (1995) Nature 373:557

    Article  CAS  Google Scholar 

  3. Broussely M (1999) J Power Sources 81–82:140

    Article  Google Scholar 

  4. Bates JB, Dudney NJ, Neudecker B, Ueda A, Evans CD (2000) Solid State Ion 135:33

    Article  CAS  Google Scholar 

  5. Baudry P, Lascaud S, Majastre H, Bloch D (1997) J Power Sources 68:432

    Article  CAS  Google Scholar 

  6. Owens BB, Smyrl WH, Xu JJ (1999) J Power Source 81–82:150

    Article  Google Scholar 

  7. Tarascon JM, Armand M (2001) Nature 414:359

    Article  CAS  Google Scholar 

  8. Winter M, Brodd RJ (2004) Chem Rev 104:4245

    Article  CAS  Google Scholar 

  9. Scrosati B (2000) Electrochim Acta 45:2461

    Article  CAS  Google Scholar 

  10. Novak P, Muller K, Santhanam KSV, Haas O (1997) Chem Rev 97:207

    Article  CAS  Google Scholar 

  11. Xiao J, Xu W, Wang D, Choi D, Wang W, Li X, Graff GL, Liu J, Zhang JG (2010) J Electrochem Soc 157:A1047

    Article  CAS  Google Scholar 

  12. Mizushima K, Jones PC, Wiseman PJ, Goodenough JB (1980) Mater Res Bull 15:783

    Article  CAS  Google Scholar 

  13. Julien C (2003) Solid State Ion 157:57

    Article  CAS  Google Scholar 

  14. Kalyani P, Kalaiselvi N (2005) Sci Tech Adv Mater 6:689

    Article  CAS  Google Scholar 

  15. Ammundsen B, Paulsen J (2001) Adv Mater 13:943

    Article  CAS  Google Scholar 

  16. Yang X, Tang W, Liu Z, Makita Y, Ooi K (2002) J Mater Chem 12:489

    Article  CAS  Google Scholar 

  17. Fey GTK, Huang DL (1999) Electrochim Acta 45:295

    Article  CAS  Google Scholar 

  18. Thackeray M (2002) Nat Mater 1:81

    Article  CAS  Google Scholar 

  19. Dahn JR, Fuller EW, Obrovac M, Von Sacken U (1994) Solid State Ion 69:265

    Article  CAS  Google Scholar 

  20. Blyr A, Sigala C, Amatucci G, Guyomard D, Chabre Y, Tarascon JM (1998) J Electrochem Soc 145:194

    Article  CAS  Google Scholar 

  21. Padhi AK, Nanjundaswamy KS, Masquelier C, Okada S, Goodenough JB (1997) J Electrochem Soc 144:1609

    Article  CAS  Google Scholar 

  22. Kang B, Ceder G (2009) Nature 458:190

    Article  CAS  Google Scholar 

  23. Malik R, Burch D, Bazant M, Ceder G (2010) Nano Lett 10:4123

    Article  CAS  Google Scholar 

  24. Lee KT, Kan WH, Nazar LF (2009) J Am Chem Soc 131:6044

    Article  CAS  Google Scholar 

  25. Ellis BL, Lee KT, Nazar LF (2010) Chem Mater 22:691

    Article  CAS  Google Scholar 

  26. Martha SK, Grinblat J, Haik O, Zinigrad E, Drezen T, Miners JH, Exnar I, Kay A, Markovsky B, Aurbach D (2009) Angew Chem 48:8559

    Article  CAS  Google Scholar 

  27. Sinha NN, Munichandraiah N (2010) J Electrochem Soc 157:A824

    Article  CAS  Google Scholar 

  28. Choi D, Wang D, Bae IT, Xiao J, Nie Z, Wang W, Viswanathan VV, Lee YJ, Zhang G, Graff GL, Yang Z, Liu J (2010) Nano Lett 10:2799

    Article  CAS  Google Scholar 

  29. Bakenov Z, Taniguchi I (2010) Electrochem Commun 12:75

    Article  CAS  Google Scholar 

  30. Kang B, Ceder G (2010) J Electrochem Soc 157:A808

    Article  CAS  Google Scholar 

  31. Martha SK, Markovsky B, Grinblat J, Gofer Y, Haik O, Zinigrad E, Aurbach D, Drezen T, Wang D, Deghenghi G, Exnar I (2009) J Electrochem Soc 156:A541

    Article  CAS  Google Scholar 

  32. Choi D, Xiao J, Choi YJ, Hardy JS, Vijayakumar M, Liu J, Xu W, Wang W, Zhang JG, Graff GL, Yang Z (2011) Energy Environ Sci 4:4560

    Article  CAS  Google Scholar 

  33. Xiao J, Chernova NA, Upreti S, Chen X, Li Z, Deng Z, Choi D, Xu W, Nie Z, Graff GL, Liu J, Whittingham MS, Zhang JG (2011) Phys Chem Chem Phys 13:18099

    Article  CAS  Google Scholar 

  34. Yang J, Xu JJ (2004) Electrochem Solid State Lett 7:A515

    Article  CAS  Google Scholar 

  35. Franger S, Cras FL, Bourbon C, Rouault H (2003) J Power Sources 119:252

    Article  Google Scholar 

  36. Kim DH, Im JS, Kang JW, Kim EJ, Ahn HN, Kim J (2007) J Nanosci Nanotechnol 7:3949

    Article  CAS  Google Scholar 

  37. Kim DH, Kim J (2006) Electrochem Solid State Lett 9:A439

    Article  CAS  Google Scholar 

  38. Kim DH, Kim J (2007) J Phys Chem Solids 68:734

    Article  CAS  Google Scholar 

  39. Liu H, Yang H, Li J (2010) Electrochim Acta 55:1626

    Article  CAS  Google Scholar 

  40. Myung ST, Komaba S, Hirosaki N, Yashiro H, Kumagai N (2004) Electrochem Acta 49:4213

    Article  CAS  Google Scholar 

  41. Belharouak I, Johnson C, Amine K (2005) Electrochem Commun 7:983

    Article  CAS  Google Scholar 

  42. Park KS, Son JT, Chung HT, Kim SJ, Lee CH, Kim HQ (2003) Electrochem Commun 5:839

    Article  CAS  Google Scholar 

  43. Huang YH, Park KS, Goodenough JB (2006) J Electrochem Soc 153:A2282

    Article  CAS  Google Scholar 

  44. Kim DK, Muralidharan P, Lee HW, Ruffo R, Yang Y, Chan CK, Peng H, Huggins RA, Cui Y (2008) Nano Lett 8:3948

    Article  CAS  Google Scholar 

  45. Chan CK, Zhang XF, Cui Y (2008) Nano Lett 8:307

    Article  CAS  Google Scholar 

  46. Muralidharan P, Venkateswarlu M, Satyanarayana N (2004) Solid State Ion 166:27

    Article  CAS  Google Scholar 

  47. Macedo PB, Moynihan CT, Bose R (1972) Phys Chem Glasses 13:171

    CAS  Google Scholar 

  48. Provenzano V, Boesch LP, Volterra V, Moynihan CT, Macedo PB (1972) J Am Ceram Soc 55:492

    Article  CAS  Google Scholar 

  49. Moynihan CT, Boesch LP, Laberge NL (1973) Phys Chem Glasses 14:122

    CAS  Google Scholar 

  50. Hayri EA, Greenblatt M (1987) J Non-Cryst Solids 94:387

    Article  CAS  Google Scholar 

  51. Joncher AK (1977) Nature 267:673

    Article  Google Scholar 

  52. Funke K (1993) Prog Solid State Chem 22:111

    Article  CAS  Google Scholar 

  53. Jain H, Mundy JN (1987) J Non-Cryst Solids 91:315

    Article  CAS  Google Scholar 

  54. Qian H, Lu JQ (2010) J Nanosci Nanotechnol 10:5346

    Article  CAS  Google Scholar 

  55. Cole KS, Cole RH (1941) J Chem Phys 9:341

    Article  CAS  Google Scholar 

  56. Frohlich H (1958) Theory of dielectrics. Oxford University Press, London

    Google Scholar 

Download references

Acknowledgments

NS gratefully acknowledges DST, CSIR, UGC, DRDO and AICTE, Govt. of India, for providing financial support in the form of research projects. The authors are also grateful for the financial support from the Natural Sciences and Engineering Research Council (NSERC), Canada for the Discovery grant individual to MM, The Canadian Bureau for International Education, on behalf of Foreign Affairs and International Trade, Canada (DFAIT) for providing Graduate Student Exchange Program (GSEP) fellowship to RP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Satyanarayana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, P.R., Venkateswarlu, M., Misra, M. et al. Enhanced conductivity and electrical relaxation studies of carbon-coated LiMnPO4 nanorods. Ionics 19, 461–469 (2013). https://doi.org/10.1007/s11581-012-0778-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-012-0778-9

Keywords

Navigation