Skip to main content
Log in

Role of mesopores on the electrochemical performance of LiCoO2 composite cathodes for lithium ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Mesoporous carbon (MC) was utilized to increase the mesoporosity of LiCoO2 composite cathode. Graphite powder (GP) was chosen as a standard of comparison because of its very low mesoporosity. Compared with MC, GP has similar particle size, lower specific surface area, and higher electronic conductivity. Acetylene black (AB) exists in the form of chains of nanoparticles. With all other factors held constant, the mixture of AB and MC (ABMC)-loaded LiCoO2 composite cathode (ABMC cathode) was superior to the mixture of AB and GP (ABGP)-loaded LiCoO2 composite cathode (ABGP cathode). The reason is described as follows. Both GP and MC form a conductive network with AB chains. ABGP cathode has higher electronic conductivity than ABMC cathode. But the ionic conductivity of the ABMC cathode is more easily enhanced than the ABGP cathode because the former has much greater mesoporosity. In addition, the mesopores absorb and retain electrolyte solution and then provide buffer lithium ions for quick electrochemical reactions, so shortening the lithium ion transfer path in the composite cathode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Skin HC, Cho WI, Jang H (2006) Electrochim Acta 52:1472

    Article  Google Scholar 

  2. Yi TF, Su J, Zhu YR, Zhu RS (2009) J Phys Chem Solids 70:153

    Article  CAS  Google Scholar 

  3. Li LJ, Li XH, Wang ZX, Wu L, Zheng JC, Guo HJ (2009) J Phys Chem Solids 70:238

    Article  CAS  Google Scholar 

  4. Dominko R, Gaberšček M, Drofenik J, Bele M, Jamnik J (2003) Electrochim Acta 48:3709

    Article  CAS  Google Scholar 

  5. Dominko R, Gaberšček M, Drofenik J, Bele M, Pejovnik S, Jamnik J (2003) J Power Sources 119–121:770

    Article  Google Scholar 

  6. Kim J, Kim B, Lee JG, Cho JG, Park B (2005) J Power Sources 139:289

    Article  CAS  Google Scholar 

  7. Endo M, Kim YA, Hayashi T, Nishimura K, Matusita T, Miyashita K, Dresselhaus MS (2001) Carbon 39:1287

    Article  CAS  Google Scholar 

  8. Wu MS, Lee JT, Chiang PCJ, Lin JC (2007) J Mater Sci 42:259

    Article  CAS  Google Scholar 

  9. Jin B, Gu HB, Zhang W, Park KH, Sun G (2008) J Solid State Electrochem 12:1549

    Article  CAS  Google Scholar 

  10. Sheem KY, Sung M, Lee YH (2010) Electrochim Acta 55:5808

    Article  CAS  Google Scholar 

  11. Park JH, Lee SY, Kim JH, Ahn S, Park JS, Jeong YU (2010) J Solid State Electrochem 14:593

    Article  CAS  Google Scholar 

  12. Guoping W, Qingtang Z, ZuoLong Y, Meizheng Q (2008) Solid State Ion 179:263

    Article  Google Scholar 

  13. Li X, Kang F, Bai X, Shen W (2007) Electrochem Commun 9:663

    Article  CAS  Google Scholar 

  14. Sheem K, Lee YH, Lim HS (2006) J Power Sources 158:1425

    Article  CAS  Google Scholar 

  15. Whittingham MS (2004) Chem Rev 104:4271

    Article  CAS  Google Scholar 

  16. Cheon SE, Kwon CW, Kim DB, Hong SJ, Kim HT, Kim SW (2000) Electrochim Acta 46:599

    Article  CAS  Google Scholar 

  17. Hong JK, Lee JH, Oh LS (2002) J Power Sources 111:90

    Article  CAS  Google Scholar 

  18. Thorat IV, Mathur V, Harb JN, Wheeler DR (2006) J Power Sources 162:673

    Article  CAS  Google Scholar 

  19. Zhang Q, Qu M, Niu H, Yu Z (2007) New Carbon Mater 22:361

    Article  Google Scholar 

  20. Li XX, Cheng FY, Guo B, Chen J (2005) J Phys Chem B 109:14017

    Article  CAS  Google Scholar 

  21. Jiang C, Zhou Y, Honma I, Kudo T, Zhou H (2007) J Power Sources 166:514

    Article  CAS  Google Scholar 

  22. Cheon SE, Yoo SY, Yoon HW, Kim JK (2006) China Patent CN1770516.

  23. Zhang Q, Peng G, Wang G, Qu M, Yu ZL (2009) Solid State Ion 180:698

    Article  CAS  Google Scholar 

  24. Kim GY, Park YJ, Jung KH, Yang DJ, Lee JW, Kim HG (2008) J Appl Electrochem 38:1477

    Article  CAS  Google Scholar 

  25. Fuertes AB, Pico F, Rojo JM (2004) J Power Sources 133:329

    Article  CAS  Google Scholar 

  26. Xing W, Qiao SZ, Ding RG, Li F, Lu GQ, Yan ZF, Cheng HM (2006) Carbon 44:216

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial supports from the Research Developing Plan of Lanzhou University of Technology (SB05200902) and 2010 National Undergraduate Innovative Experiment Program are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingtang Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q., Fan, W., Wang, G. et al. Role of mesopores on the electrochemical performance of LiCoO2 composite cathodes for lithium ion batteries. Ionics 17, 697–703 (2011). https://doi.org/10.1007/s11581-011-0573-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-011-0573-z

Keywords

Navigation