Skip to main content

Advertisement

Log in

Synthesis of mesoporous manganese dioxide/expanded graphite composite and its lithium-storage performance

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

A mesoporous manganese dioxide (\(\hbox {MnO}_{2})\)/expanded graphite (EG) composite was successfully fabricated using mesoporous silica decorated EG (KIT-6/EG) as a hard template. Different amounts of EG were introduced to the synthetic system to adjust the \(\hbox {MnO}_{2}\):EG mass ratio of the composite. X-ray diffraction, transmission electron microscopy, scanning electron microscopy and nitrogen adsorption–desorption analyses were employed to characterize the structure and morphology of the composite. Results show that the distribution of \(\hbox {MnO}_{2}\) nanoparticles grown on the EG layers decreases gradually with increasing EG content. Moreover, in the presence of excess EG, the specific surface area of the samples dramatically decreases. As the anode electrode of a Li-ion battery (LIB), the composite (\(\hbox {MnO}_{2}\hbox {:EG }= 34{\%}\hbox { w/w}\)) exhibits a specific capacity of \(\sim \)250 mA h \(\mathrm{g}^{-1}\) at a current density of \(200\hbox { mA g}^{-1}\) for up to 100 cycles, this capacity is much higher than that of pure \(\hbox {MnO}_{2}\) (\(\sim \)10 mA h \(\hbox {g}^{-1})\) due to its improved electrical conductivity. The composite also shows good rating performance when the current density is tuned. These results indicate that the composite has potential application as an anode material for next-generation LIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Qu X, Huang G, Xing B, Si D, Xu B, Chen Z et al 2019 J. Alloys Compd. 772 814

    Article  CAS  Google Scholar 

  2. Zhang W, Zhang B, Jin H, Li P, Zhang Y, Ma S et al 2018 Ceram. Int. 44 20441

    Article  CAS  Google Scholar 

  3. Kwon K M, Kim I G, Lee K-Y, Kim H, Kim M S, Cho W I et al 2019 J. Ind. Eng. Chem. 69 39

    Article  CAS  Google Scholar 

  4. Zhang W, Li J, Zhang J, Sheng J, He T, Tian M et al 2017 ACS Appl. Mater. Interfaces 9 12680

    Article  CAS  Google Scholar 

  5. Puttapati S K, Gedela V, Srikanth V V S S, Reddy M V, Adams S and Chowdari B V R 2018 Bull. Mater. Sci. 41 53

    Article  Google Scholar 

  6. Palmieri A, Yazdani S, Kashfi-Sadabad R, Karakalos S G, Pettes M T and Mustain W E 2018 J. Phys. Chem. C 122 7120

    Article  CAS  Google Scholar 

  7. Zhang Y, Zhuo Q, Lv X, Ma Y, Zhong J and Sun X 2015 Electrochim. Acta 178 590

    Article  CAS  Google Scholar 

  8. Lv X, Deng J, Wang J, Zhong J and Sun X 2015 J. Mater. Chem. A 3 5183

    Article  CAS  Google Scholar 

  9. Zheng X, Wang H, Wang C, Deng Z, Chen L, Li Y et al 2016 Nano Energy 22 269

    Article  CAS  Google Scholar 

  10. Yan D, Zhang Y, Zhang X, Yu Z, Zhao Y, Zhu G et al 2017 Ceram. Int. 43 9235

    Article  CAS  Google Scholar 

  11. Bai B, Qiao Q, Li J and Hao J 2016 Chin. J. Catal. 37 27

    Article  Google Scholar 

  12. Ette P M, Selvakumar K, Senthil Kumar S M and Ramesha K 2018 Electrochim. Acta 292 532

    Article  CAS  Google Scholar 

  13. Wang J, Zhang G and Zhang P 2017 J. Mater. Chem. A 55719

    Article  CAS  Google Scholar 

  14. Wang Z and Wang F 2017 J. Mater. Chem. A 5 9709

    Article  CAS  Google Scholar 

  15. Liu H, Hu Z, Su Y, Ruan H, Hu R and Zhang L 2017 Appl. Surf. Sci. 392 777

    Article  CAS  Google Scholar 

  16. Rao S R and Varadaraju U V 2015 Bull. Mater. Sci. 381385

    Article  CAS  Google Scholar 

  17. Zhai X, Mao Z, Zhao G, Rooney D, Zhang N and Sun K 2018 J. Power Sources 402 373

    Article  CAS  Google Scholar 

  18. Zhang Z, Huang Y, Yan J, Li C, Chen X and Zhu Y 2019 Appl. Surf. Sci. 473 266

    Article  CAS  Google Scholar 

  19. Hu Y, Wu K, Zhang F, Zhou H and Qi L 2018 ACS Appl. Nano Mater. 2 429

    Article  Google Scholar 

  20. Li Z, An Y, Hu Z, An N, Zhang Y, Guo B et al 2016 J. Mater. Chem. A 4 10618

    Article  CAS  Google Scholar 

  21. Zeng S, Zhao R, Li A, Xue S, Lv D, Luo Q et al 2019 Appl. Surf. Sci. 463 211

    Article  CAS  Google Scholar 

  22. Wang Y, Lai W, Wang N, Jiang Z, Wang X, Zou P et al 2017 Energy Environ. Sci. 10 941

    Article  CAS  Google Scholar 

  23. An Y, Fei H, Zeng G, Ci L, Xi B, Xiong S et al 2018 J. Power Sources 378 66

    Article  CAS  Google Scholar 

  24. Luo J-Y, Wang Y-G, Xiong H-M and Xia Y-Y 2007 Chem. Mater. 19 4791

    Article  CAS  Google Scholar 

  25. Wang S, Xu S, Liu C, Chen F, Wang D, Liu S et al 2016 Chin. J. Chem. Eng. 24 190

    Article  CAS  Google Scholar 

  26. Bai B, Qiao Q, Li Y, Peng Y and Li J 2018 Chin. J. Catal. 39 630

    Article  CAS  Google Scholar 

  27. Wu Z Y, Wang Y M, Huang W W, Yang J, Wang H J, Xu J H et al 2007 Chem. Mater. 19 1613

    Article  CAS  Google Scholar 

  28. Wu Z, Lin Y, Cui R, Xu N, Chen Z, Chen F et al 2018 Sci. Adv. Mater. 9 1

    Google Scholar 

  29. Chakraborty D, Nandi S, Mullangi D, Haldar S, Vinod C P and Vaidhyanathan R 2019 ACS Appl. Mater. interfaces 11 15670

    Article  CAS  Google Scholar 

  30. Li Y, Zhao Y, Ma C and Zhao Y 2016 Electrochim. Acta 218 191

    Article  CAS  Google Scholar 

  31. Hu S, Song Y, Yuan S, Liu H, Xu Q, Wang Y et al 2016 J. Power Sources 303 333

    Article  CAS  Google Scholar 

  32. Xiao Z, Lei C, Yu C, Chen X, Zhu Z, Jiang H et al 2019 Nanoscale 11 8270

    Article  CAS  Google Scholar 

  33. Wang Y, Wu H, Liu Z, Zhao H, Huang L, Wang Q et al 2019 Electrochim. Acta 304 158

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Jiangsu Province-Outstanding Youth Project (BK20180103) and the Science and Technology Development Project of Suzhou (SYG201818). Financial supports from Jiangsu Collaborative Innovation Center of Technology and Material for Water Treatment, the Open Projects of the International Joint Laboratory of Chinese Education Ministry on Resource Chemistry (A-2017-002) and the State Key Laboratory of Materials-Oriented Chemical Engineering (KL17-06) and the Jiangsu Innovation Project for Graduate Education (KYCX17_2064) are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengying Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Liu, X., Liu, XQ. et al. Synthesis of mesoporous manganese dioxide/expanded graphite composite and its lithium-storage performance. Bull Mater Sci 43, 73 (2020). https://doi.org/10.1007/s12034-019-2032-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-2032-9

Keywords

Navigation