Skip to main content
Log in

Genetic diversity of wild Cymbidium goeringii (Orchidaceae) populations from Hubei based on Inter-simple sequence repeats analysis

  • Research Article
  • Published:
Frontiers of Biology in China

Abstract

Cymbidium goeringii is a diploid and nonrewarding, bumblebee-pollinated species, which is distributed in China, Japan and Korea Peninsula. This species is now highly endangered due to the mass collection and forest clearance in China. In the present study, we investigated the distribution of genetic variation within and between eleven populations of Cymbidium goeringii in central China by using Inter-simple sequence repeats (ISSR) markers. Eleven primers produced a total of 127 clear and reproducible bands of which 112 were polymorphic. High genetic diversity was detected in Cymbidium goeringii for both population level (P = 63.1%; He = 0.194 5) and species level (P = 88.2%; He = 0.262 8). A higher level of genetic differentiation was detected among populations (G ST = 0.244 0, F ST = 0.220 7) with Nei’s G ST analysis and analysis of molecular variance (AMOVA), and no correlation was found between geographical and genetic distance. Genetic drift rather than gene flow played an important role in forming the present population structure of Cymbidium goeringii. Limited gene flow among populations and gene drift increase the extinction risk of local populations. Some conservation concerns are therefore discussed together with possible strategies for implementing in situ and ex situ conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackerman J D, Ward S (1999). Genetic variation in a widespread, epiphytic orchid: where is the evolutionary potential? Systematic Botany, 24: 282–291

    Article  Google Scholar 

  • Borba E L, Shepherd G J, Semir J (1999). Reproductive systems and crossing potential in three species of Bulbophyllum (Orchidaceae) occurring in Brazilian “campo rupestre” vegetation. Plant Systematics and Evolution, 217: 205–214

    Article  Google Scholar 

  • Bussell J D (1999). The distribution of random amplified polymorphic DNA (RAPD) diversity among populations of Isotoma petraea (Lobeliaceae). Molecular Ecology, 8: 775–789

    Article  CAS  Google Scholar 

  • Case M A (1993). High levels of allozyme variation within Cyperipedium calceolus (Orchidaceae) and low levels of divergence among its varieties. Systematic Botany, 18: 663–677

    Article  Google Scholar 

  • Case M A, Mlodozeniec H T, Wallace L E, Weldy T W (1998). Conservation genetics and taxonomic status of the rare Kentucky lady’s slipper: Cypripedium kentudkiense(Orchidaceae). American Journal of Botany, 85: 1779–1786

    Article  Google Scholar 

  • Chen S C, Tsi Z H (1998). The Orchids of China. Beijing: Chinese Forestry Publisher (in Chinese)

    Google Scholar 

  • Chen S C, Tsi Z H, Lang K Y, Zhu G H (1999). Flora of China, Beijing: Science Press, 18: 171–178 (in Chinese)

    Google Scholar 

  • Ciofi C, Beaumont M A, Swingland I R, Bruford M W (1999). Genetic divergence and units for conservation in the Komodo dragon Varanus komodoensis. Proceedings of the Royal Society B: Biological Science, 266: 2269–2274

    Article  Google Scholar 

  • Cozzolino S, Widmer A (2005). Orchid diversity: An evolutionary consequence of deception? Trends in Ecology and Evolution, 20: 487–494

    Article  PubMed  Google Scholar 

  • D’amato F (1997). Role of somatic mutations in the evolution of higher plants. Caryologia, 50: 1–15

    Google Scholar 

  • Doyle J J, Doyle J L (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemistry Bulletin, 19: 11–15

    Google Scholar 

  • Ehlers B K, Pedersen H (2000). Genetic variation in three species of Epipactis (Orchidaceae): Geographic scale and evolutionary inferences. Biological Journal of the Linnean Society, 69: 411–430

    Article  Google Scholar 

  • Ellstrand N C, Elam D R (1993). Population genetic consequences of small population size: Implications for plant conservation. Annual Review of Ecology and Systematics, 24: 217–242

    Article  Google Scholar 

  • Ferdy J, Loriot S, Sandmeier M, Lefranc M, Raquin C (2001). Inbreeding depression in a rare deceptive orchid. Canadian Journal of Botany, 79: 1,181–1,188

    Article  Google Scholar 

  • Frankham R, Ballou J D, Briscoe D A (2002). Introduction to Conservation Genetics. Cambridge: Cambridge University Press

    Google Scholar 

  • Gustafsson S (2000). Patterns of genetic variation in Gymnadenia conopsea, the fragrant orchid. Molecular Ecology, 9: 1863–1872

    Article  PubMed  CAS  Google Scholar 

  • Hamrick J L, Godt M J W (1989). Allozyme diversity in plant species. In: Brown A H D, Clegg M T, Kahler A L, Weir B S, eds. Plant Population Genetics, Breeding and Genetic Resources. Sunderland: Sinauer Associates, 43–63

    Google Scholar 

  • Hamrick J L, Godt M J W (1996). Conservation genetics of endemic species. In: Avise J C, Hamrick J L, eds. Conservation Genetics: Case Histories from Nature. New York: Chapman and Hall, 281–304

    Google Scholar 

  • Hutchison D W, Templeton A R (1999). Correlation of pairwise genetic and geographic distance measures: Inferring the relative influence of gene flow and drift on the distribution of genetic variability. Evolution, 53: 1898–1914

    Article  Google Scholar 

  • IUCN/SSC Orchid Specialist Group (1996). Orchids-Status Survey and Conservation Action Plan. Gland and Cambridge: IUCN

    Google Scholar 

  • Kull T, Kindlmann P, Hutchings M J, Primack R B (2006). Conservation biology of orchids: Introduction to the special issue. Biological Conservation, 129: 1–3

    Article  Google Scholar 

  • Li A, Ge S (2006). Genetic variation and conservation of Changnienia amoena, an endangered orchid endemic to China. Plant Systematics and Evolution, 258: 251–260

    Article  CAS  Google Scholar 

  • Li A, Luo Y B, Ge S (2002). A preliminary study on conservation genetics of an endangered Orchid (Paphiopedilum micranthum) from southwestern China. Biochemical Genetics, 40: 195–201

    Article  PubMed  CAS  Google Scholar 

  • Mantel N (1967). The detection of disease clustering and a generalized regression approach. Cancer Research, 27: 209–220

    PubMed  CAS  Google Scholar 

  • Nei M (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89: 583–590

    PubMed  Google Scholar 

  • Nybom H (2004). Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Molecular Ecology, 13: 1143–1155

    Article  PubMed  CAS  Google Scholar 

  • Rohlf F J (2000). NTSYS-pc Version 2.1: Numerical Taxonomy and Multivariate Analysis System. Setauket: Exeter Software

    Google Scholar 

  • Schaal B A, Hayworth D A, Olsen K M, Rauscher J T, Smith W A (1998). Phylogeographic studies in plants: Problems and prospects. Molecular Ecology, 7: 465–474

    Article  Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000). ARLEQUIN Version 2.0: A Software for Population Genetics Data Analysis. Geneva: Genetics and Biometry Laboratory, Department of Anthropology, University of Geneva

    Google Scholar 

  • Shen L, Chen X Y, Li Y Y (2002). Glacial refugia and postglacial recolonization patterns of organisms. Acta Ecologica Sinica, 22: 1,983–1,990 (in Chinese)

    Google Scholar 

  • Shi Y F, Cui Z J, Li J J (1989). Quaterany Glacials and Environmental Issues of Eastern China. Beijing: Science Press (in Chinese)

    Google Scholar 

  • Slatkin M, Barton N H (1989). A comparison of three indirect methods for estimating average levels of gene flow. Evolution, 43: 1349–1368

    Article  Google Scholar 

  • Smith J L, Hunter K L, Hunter R B (2002). Genetic variation in the terrestrial orchid Tipularia discolor. Southeastern Naturalist, 1(1): 17–26

    Article  Google Scholar 

  • Sun M, Wong K C (2001). Genetic structure of three orchid species with contrasting breeding systems using RAPD and allozyme markers. American Journal of Botany, 88: 2180–2188

    Article  CAS  Google Scholar 

  • Tremblay R L, Ackerman J D (2001). Gene flow and effective population size in Lepanthes (Orchidaceae): A case for genetic drift. Biological Journal of the Linnean Society, 72: 47–62

    Article  Google Scholar 

  • Wang S, Xie Y (2004). China Species Red List. Beijing: Higher Education Press, 1: 433

    Google Scholar 

  • Wolfe A D, Liston A (1998). Contributions of PCR-based methods to plant systematics and evolutionary biology. In: Soltis D E, Soltis P S, Doyle J J, eds. Plant Molecular Systematics II. Boston: Kluwer, 43-86

    Google Scholar 

  • Wong K C, Sun M (1999). Reproductive biology and conservation genetics of Goodyera procera (Orchidaceae). American Journal of Botany, 86: 1,406–1,413

    Article  Google Scholar 

  • Yeh F C, Yang R C, Boyle T (1999). POPGENE Version l.31: Microsoft Window-based Freeware for Population Genetic Analysis. Edmonton: Department of Renewable Resources

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Bo.

Additional information

__________

Translated from Biodiversity Science, 2006, 14(3): 250–257 [译自: 生物多样性]

Equally contributed authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, X., Gao, L. & Yang, B. Genetic diversity of wild Cymbidium goeringii (Orchidaceae) populations from Hubei based on Inter-simple sequence repeats analysis. Front. Biol. China 2, 419–424 (2007). https://doi.org/10.1007/s11515-007-0064-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-007-0064-9

Keywords

Navigation