Skip to main content
Log in

Simulation and Analytical Study of Optical Complex Field in Nano-corral Slits Plasmonic Lens

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Although spiral plasmonic lens has been proposed as circular polarization analyzer, there is no such plasmonic nanostructure available for linear polarization. In the current work, we have designed nano-corral slits (NCS) plasmonic lens, which focuses the x- and y-polarized light into spatially distinguished plasmonic fields. We have calculated analytically and numerically the electric field intensity and phase of the emission from nano-corral slits plasmonic lens with different pitch lengths under various polarizations of the illumination. It has been shown that one can control the wave front of the output beam of these plasmonic lenses by manipulating the illumination of both circular and linear polarization. Our theoretical study in correlation with FDTD simulation has shown that NCS plasmonic lens with pitch length equal to λspp produces scalar vortex beam having optical complex fields with helical wave front and optical singularity at the center under circular polarization of light. When NCS lens (pitch = λspp) is illuminated with linearly polarized light, it exhibits binary distribution of phase with same electric field intensity around the center. However, with pitch length of 0.5λspp, NCS shows linear dichroism under linearly polarized illumination unlike spiral plasmonic lens (SPL) eliminating the use of circularly polarized light. Optical complex fields produced by these NCS plasmonic lenses may find applications for faster quantum computing, data storage, and telecommunications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  PubMed  Google Scholar 

  2. Maier SA (2007) Plasmonics: fundamentals and applications. Springer US, Boston, MA

    Book  Google Scholar 

  3. Lassiter JB, Sobhani H, Fan JA, Kundu J, Capasso F, Nordlander P, Halas NJ (2010) Fano resonances in Plasmonic nanoclusters: geometrical and chemical tunability. Nano Lett 10:3184–3189

    Article  CAS  PubMed  Google Scholar 

  4. Liu Z, Lee H, Xiong Y, Sun C, Zhang X (2007) Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315(5819):1686–1686

    Article  CAS  PubMed  Google Scholar 

  5. Smolyaninov II, Hung YJ, Davis CC (2006) Magnifying superlens in the visible frequency range. Science 315(5819):1699

    Article  CAS  Google Scholar 

  6. Vedantam S, Lee H, Tang J, Conway J, Staffaroni M, Yablonovitchet E (2009) A plasmonic dimple lens for nanoscale focusing of light. Nano Lett 9:3447–3452

    Article  CAS  PubMed  Google Scholar 

  7. Bozhevolnyi SI, Volkov VS, Devaux E, Laluet JY, Ebbesen TW (2006) Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440:508–511

    Article  CAS  PubMed  Google Scholar 

  8. Fang Z, Lin C, Ma R, Huang S, Zhu X (2010) Planar plasmonic focusing and optical transport using CdS nanoribbon. ACS Nano 4:75–82

    Article  CAS  PubMed  Google Scholar 

  9. Rothenhäusler B, Knoll W (1988) Surface-plasmon microscopy. Nature 332:615–617

    Article  Google Scholar 

  10. Höppener C, Beams R, Novotny L (2009) Background suppression in near-field optical imaging. Nano Lett 9:903–908

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Fang N, Lee H, Sun C, Zhang X (2005) Sub–diffraction-limited optical imaging with a silver superlens. Science 308:534–537

    Article  CAS  PubMed  Google Scholar 

  12. Babayan Y, McMahon JM, Li S, Gray SK, Schatz GC, Odom TW (2009) Confining standing waves in optical corrals. ACS Nano 3:615–620

    Article  CAS  PubMed  Google Scholar 

  13. Lerman GM, Yanai A, Levy U (2009) Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light. Nano Lett 9:2139–2143

    Article  CAS  PubMed  Google Scholar 

  14. Chen W, Nelson RL, Zhan Q (2012) Efficient miniature circular polarization analyzer design using hybrid spiral plasmonic lens. Opt Lett 37:1442–1444

    Article  PubMed  Google Scholar 

  15. Chen W, Abeysinghe DC, Nelson RL, Zhan Q (2010) Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer. Nano Lett 10:2075–2079

    Article  CAS  PubMed  Google Scholar 

  16. Li J, Yang C, Zhao H, Lin F, Zhu X (2014) Plasmonic focusing in spiral nanostructures under linearly polarized illumination. Opt Express 22:16686–16693

    Article  PubMed  Google Scholar 

  17. Gorodetski Y, Niv A, Kleiner V, Hasman E (2008) Observation of the spin-based plasmonic effect in nanoscale structures. Phys Rev Lett 101:43903

    Article  CAS  Google Scholar 

  18. Bachman KA, Peltzer JJ, Flammer PD, Furtak TE, Collins RT, Hollingsworth RE (2012) Spiral plasmonic nanoantennas as circular polarization transmission filters. Opt Express 20:1308–1319

    Article  CAS  PubMed  Google Scholar 

  19. Yang S, Chen W, Nelson RL, Zhan Q (2009) Miniature circular polarization analyzer with spiral plasmonic lens. Opt Lett 34:3047–3049

    Article  PubMed  Google Scholar 

  20. Spektor G, David A, Gjonaj B, Bartal G, Orenstein M (2015) Metafocusing by a metaspiral plasmonic lens. Nano Lett 15:5739–5743

    Article  CAS  PubMed  Google Scholar 

  21. Gjonaj B, David A, Blau Y, Spektor G, Orenstein M, Dolev S, Bartal G (2014) Sub-100 nm focusing of short wavelength plasmons in homogeneous 2D space. Nano Lett 14:5598–5602

    Article  CAS  PubMed  Google Scholar 

  22. Rui G, Zhan Q, Cui Y (2015) Tailoring optical complex field with spiral blade plasmonic vortex lens. Sci Rep 5:13732

    Article  PubMed Central  PubMed  Google Scholar 

  23. Dennis MR, O’Holleran K, Padgett MJ (2009) Chapter 5 singular optics: optical vortices and polarization singularities. Prog Opt 53:293–363

    Article  Google Scholar 

  24. Bozinovic N, Yue Y, Ren Y et al (2013) Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 340(80):1545–1548

    Article  CAS  PubMed  Google Scholar 

  25. Miao P, Zhang Z, Sun J et al (2016) Orbital angular momentum microlaser. Science 353(80):464–467

    Article  CAS  PubMed  Google Scholar 

  26. Venugopalan P, Li X, Gu M (2011) Characterisation of a plasmonic lens for super-resolution optical data storage. In: 2011 International Quantum Electronics Conference (IQEC) and Conference on Lasers and Electro-Optics (CLEO) Pacific Rim incorporating the Australasian Conference on Optics, Lasers and Spectroscopy and the Australian Conference on Optical Fibre Technology IEEE, pp 1637–1638. doi: https://doi.org/10.1109/IQEC-CLEO.2011.6193951

  27. Rui G, Nelson RL, Zhan Q (2012) Beaming photons with spin and orbital angular momentum via a dipole-coupled plasmonic spiral antenna. Opt Express 20:18819–18826

    Article  PubMed  Google Scholar 

  28. Lee S-Y, Kim S-J, Kwon H, Lee B (2015) Spin-direction control of high-order plasmonic vortex with double-ring distributed nanoslits. IEEE Photon Technol Lett 27:705–708

    Article  Google Scholar 

Download references

Funding

The authors received financial assistance from the Indian Space Research Organisation (ISRO) under Grant STC- MET-2015099.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanmoy Maiti.

Electronic supplementary material

ESM 1

(DOCX 2087 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, P., Gupta, S. & Maiti, T. Simulation and Analytical Study of Optical Complex Field in Nano-corral Slits Plasmonic Lens. Plasmonics 13, 2151–2160 (2018). https://doi.org/10.1007/s11468-018-0732-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-018-0732-4

Keywords

Navigation