Advertisement

Plasmonics

, Volume 13, Issue 4, pp 1277–1286 | Cite as

Design of All-Optical Universal Gates Using Plasmonics Mach-Zehnder Interferometer for WDM Applications

  • Santosh Kumar
  • Lokendra Singh
  • Nan-Kuang Chen
Article

Abstract

All optical integrated circuits have great application in high-speed computing and information processing to overcome the limitation of conventional electronics. In this work, a novel design of all optical universal gates using optical Kerr-effect and optical bistability of a plasmonics-based Mach-Zehnder interferometer (MZI) has been proposed. A MZI is capable for switching of light which depends on the intensities of optical input signal. The study of device is carried out using finite-difference-time-domain (FDTD) method and verified using MATLAB simulation.

Keywords

Plasmonics Finite-difference-time-domain (FDTD) method Mach-Zehnder interferometer Optical Kerr-effect Optical bistability 

Notes

Acknowledgements

The authors would like to thank Prof. K.K. Raina, Vice-Chancellor of DIT University, Dehradun, for the encouragement and support during the present research work.

References

  1. 1.
    Cotter D, Manning RJ, Blow KJ, Ellis AD, Kelly AE, Nesset D, Phillips ID, Poustie AJ, Rogers DC (1999) Nonlinear optics for high-speed digital information processing. Science 286:1523–1528CrossRefGoogle Scholar
  2. 2.
    Wu YD (2004) Nonlinear all-optical switching device by using the spatial soliton collision. Fiber and Integrated Optics 23:387–404CrossRefGoogle Scholar
  3. 3.
    Kumar S, Bisht A, Singh G, Sharma S, Amphawan A (2015) Proposed new approach to the design of universal logic gates using the electro-optic effect in Mach Zehnder interferometers. Appl Opt 54:8479–8484CrossRefGoogle Scholar
  4. 4.
    Sribashyam S, Ramachandran M, Prince S, Ravi BR (2015) Design of full-adder and subtractor based on MZI-SOA. IEEE proc., signal processing and communication engineering system 14984708, 19-21Google Scholar
  5. 5.
    J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, 1997 Guiding of a one-dimensional optical bema with nanometer diameter Opt Lett 22, 475–477 (1997)Google Scholar
  6. 6.
    Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189–193CrossRefGoogle Scholar
  7. 7.
    Zia R, Schuller JA, Chandran A, Brongersma ML (2006) Plasmonics: the next chip scale technology. Mater Today 9(20–27)Google Scholar
  8. 8.
    Brongersma ML, Zia R, Schuller JA (2007) Plasmonics—the missing link between nanoelectronics and microphotonics. Applied Physics B 89(221–223)Google Scholar
  9. 9.
    Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830CrossRefGoogle Scholar
  10. 10.
    Weeber J-C, Dereux A, Girard C, Krenn JR, Goudonnet J-P (1999) Plasmon polaritons of metallic nanowires for controlling submicron propagation of light. Phys Rev B 60(9061)
  11. 11.
    Bozhevolnyi SI, Volkov VS, Devaux E, Laluet J-Y, Ebbesen TW (2006) Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440:508–511CrossRefGoogle Scholar
  12. 12.
    Veronis G, Fan S (2005) Guided subwavelength plasmonic mode supported by a slot in a thin metal film. Opt Lett 30:3359–3361CrossRefGoogle Scholar
  13. 13.
    Zia R, Selker MD, Brongersma ML (2005) Leaky and bound modes for surface plasmon waveguides. Physics Review B 71(165431)Google Scholar
  14. 14.
    Boltasseva A, Nikolajsen T, Leosson K, Kjaer K, Larsen MS, Bozhevolnyi SI (2005) Integrated optical components utilizing long-range surface plasmon polaritons. J Lightwave Technol 23:413–422CrossRefGoogle Scholar
  15. 15.
    Dionne JA, Sweatlock LA, Atwater HA, Polman A (2006) Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization. Phys Rev B 73:035407CrossRefGoogle Scholar
  16. 16.
    Economou EN (1969) Surface plasmons in thin films. Phys Rev 182:539CrossRefGoogle Scholar
  17. 17.
    Dionne JA, Sweatlock LA, Atwater HA, Polman A (2005) Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model. Phys Rev B 72:075405CrossRefGoogle Scholar
  18. 18.
    Hosseini A, Massoud Y (2007) Nanoscale surface plasmon based resonator using rectangular geometry. ApplPhys Lett 90:181102CrossRefGoogle Scholar
  19. 19.
    Xiao S, Liu L, Qiu M (2006) Resonator channel drop filters in a plasmon-polaritons metal. Opt Express 14:2932–2937CrossRefGoogle Scholar
  20. 20.
    Lin XS, Huang XG (2008) Tooth-shaped plasmonic waveguide filters with nanometeric sizes. Opt Lett 33:2874–2876CrossRefGoogle Scholar
  21. 21.
    Matsuzaki Y, Okamoto T, Haraguchi M, Fukui M, Nakagaki M (2008) Characteristics of gap plasmon waveguide with stub structures. Opt Express 16:16314–16325CrossRefGoogle Scholar
  22. 22.
    Zia R, Selker MD, Catrysse PB, Brongersma ML (2004) Geometries and materials for subwavelength surface plasmon modes. JOSA A 21(2442–2446)Google Scholar
  23. 23.
    Min C, Veronis G (2009) Absorption switches in metal-dielectric-metal plasmonic waveguides. Opt Express 17:10757–10766CrossRefGoogle Scholar
  24. 24.
    Tejeira FL, Rodrigo SG, Moreno LM, Vidal FJ, Devaux E, Ebbesen TW, Krenn JR, Radko IP, Bozhevolnyi SI, González MU, Weeber JC, Dereux A (2007) Efficient unidirectional nanoslit couplers for surface plasmons. Nat Phys 3(324–328)Google Scholar
  25. 25.
    Yu Z, Veronis G, Fan S, Brongersma ML (2008) Gain-induced switching in metal-dielectric-metal plasmonic waveguides. Appl Phys Lett 92:041117CrossRefGoogle Scholar
  26. 26.
    J. A. Pereda, A. Vegas and Prieto A., An improved compact 2D full-wave FDTD method for general guided wave structures Microwave Opt. Tech. Lett 38, 331–336 (2003)Google Scholar
  27. 27.
    Liu XF, Ke ML, Qiu BC, Bryce AC, Marsh JH (2000) Fabrication of monolithically integrated Mach-Zehnder asymmetric interferometer switch. Indium Phosphide and Related Materials Conf Proc International Conference 412Google Scholar
  28. 28.
    Ehlers H, Schlak M, Fischer UHP (2001) Multi-fiber-chip-coupling modules for monolithically integrated Mach-Zehnder interferometers for TDM/WDM communication systems. Optical Fiber Communication Conference and Exhibit 3:WDD66–WDD61Google Scholar
  29. 29.
    Pavelescu L (2001) Simplified design relationships for silicon integrated optical pressure sensors based on Mach-Zehnder interferometry with antiresonant reflecting optical waveguides International 1. Semiconductor Conf CAS Proceedings 201Google Scholar
  30. 30.
    Yabu T, Geshiro M, Kitamura T, Nishida K, Sawa S (2002) All-optical logic gates containing a two-mode nonlinear waveguide. IEEE J Quantum Electron 38:37–46CrossRefGoogle Scholar
  31. 31.
    Kan’an AM, Likam WP (1997) Ultrafast all-optical switching not limited by the carrier lifetime in an integrated multiple-quantum-well Mach-Zehnder interferometer. J. Opt. Soc. Am. B 14:3217–3223CrossRefGoogle Scholar
  32. 32.
    Bader MA et al (2002) Poly(p-phenylenevinylene) derivatives: new promising materials for nonlinear all-optical waveguide switching. J Opt Soc Am B 19:2250–2262CrossRefGoogle Scholar
  33. 33.
    Kumar S, Singh L (2016) Proposed new approach to design all optical AND gate using plasmonic based Mach-Zehnder interferometer for high speed communication. Proc. SPIE 9884, Nanophotonics VI:98842DGoogle Scholar
  34. 34.
    Kumar S, Singh L, Swarnakar S (2017) Design of one bit magnitude comparator using nonlinear plasmonic waveguide. Plasmonics 12(2):369-375Google Scholar
  35. 35.
    Y. H. Pramono and Endarko, Nonlinear waveguides for optical logic and computation Journal of Nonlinear Optical Physics & Materials 10, 209 (2001)Google Scholar
  36. 36.
    Agrawal GP (2006) Nonlinear fiber optics Academic press, 3rd ednGoogle Scholar
  37. 37.
    Loeb ML, Stilwell GR (1988) High-speed data transmission on an optical fiber using a byte-wide WDM system. J Lightwave Technol 6:1306–1311CrossRefGoogle Scholar
  38. 38.
    Shao S-K, Kao M-S (1994) WDM coding for high-capacity lightwave systems. J Lightwave Technol 12:137–148CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Photonics Lab, Department of Electronics and Communication EngineeringDIT UniversityDehradunIndia
  2. 2.Optoelectronics Research center, Department of Electro-Optical EngineeringNational United UniversityMiaoliTaiwan

Personalised recommendations