Skip to main content
Log in

Terahertz Plasmonic Microcavity with High Quality Factor and Ultrasmall Mode Volume

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, the characteristics of a novel terahertz plasmonic microcavity consisting of a circular hole and a coaxial (metallic) cylindrical core machined on a planar metal surface is theoretically investigated. It is shown that such a structure can sustain plasmonic modes, whose resonant wavelengths are much larger than the hole diameter and fields tightly localized within the cavity. For this cavity, both high quality factor and ultrasmall mode volume can be achieved in the terahertz range. As this type of microcavity is particularly compatible with planar technology, it has promising applications in the miniaturization and integration of terahertz optical components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings. Springer, New York

    Google Scholar 

  2. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  Google Scholar 

  3. Maier SA, Kik PG, Atwate HA, Meltzer S, Harel E, Koel BE, Requicha AAG (2003) Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat Mater 2:229–232

    Article  CAS  Google Scholar 

  4. Stockman MI (2004) Nanofocusing of optical energy in tapered plasmonic waveguides. Phys Rev Lett 93:137404

    Article  Google Scholar 

  5. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189–193

    Article  CAS  Google Scholar 

  6. Lal S, Link S, Halas NJ (2007) Plasmonics: nanoscale optics from sensing to waveguiding. Nat Photon 1:641-648

    Article  CAS  Google Scholar 

  7. Tonouchi M (2007) Cutting-edge terahertz technology. Nat Photon 1:97–105

    Article  CAS  Google Scholar 

  8. Pendry JB, L. Martin-Moreno, F. J. Garcia-Vidal (2004) Mimicking surface plasmons with structured surfaces. Science 305:847–848

    Article  CAS  Google Scholar 

  9. Garcia-Vidal FJ, Martin-Moreno L, Pendry JB (2005) Surfaces with holes in them: new plasmonic metamaterials. J Opt A 7:S97–S101

    Article  Google Scholar 

  10. Hibbins AP, Evans BR, and Sambles JR, (2005) Experimental verification of designer surface plasmons. Science 308:670–672

    Article  CAS  Google Scholar 

  11. Williams CR, Andrews SR, Maier SA, Fernandez-Dominguez AI, Martin-Moreno L, Garcia-Vidal FJ (2008) Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces. Nat Photon 2:175–179

    Article  CAS  Google Scholar 

  12. Shen LF, Chen XD, Zhong Y, Agarwal K (2008) Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires. Phys Rev B 77:075408

    Article  Google Scholar 

  13. Shen LF, Chen XD, Yang TJ (2008) Terahertz surface plasmon polaritons on periodically corrugated metal surfaces. Opt Express 16:3326

    Article  CAS  Google Scholar 

  14. Maier SA, Andrews SR, Martin-Moreno L, Garcia-Vidal FJ (2006) Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires. Phys Rev Lett 97:176805

    Article  Google Scholar 

  15. Fernandez-Dominguez AI, Williams CR, Garcia-Vidal FJ, Martin-Moreno L, Andrews SR, Maier SA (2008) Terahertz surface plasmon polaritons on a helically grooved wire. Appl Phys Lett 93:141109

    Article  Google Scholar 

  16. Fernandez-Dominguez AI, Moreno E, Martin-Moreno L, Garcia-Vidal FJ (2009) Guiding terahertz waves along subwavelength channels. Phys Rev B 79:233104

    Article  Google Scholar 

  17. Fernandez-Dominguez AI, Moreno E, Martin-Moreno L, Garcia-Vidal FJ (2009) Terahertz wedge plasmon polaritons. Opt Lett 34:2063–2065

    Article  CAS  Google Scholar 

  18. Martin-Cano D, Nesterov ML, Fernandez-Dominguez AI, Garcia-Vidal FJ, Martin-Moreno L, Moreno E (2010) Domino plasmons for subwavelength terahertz circuitry. Opt Express 18:754

    Article  CAS  Google Scholar 

  19. Gao Z, Zhang XF, Shen LF (2010) Wedge mode of spoof surface plasmon polaritons at terahertz frequencies. J Appl Phys. 108:113104

    Article  Google Scholar 

  20. Shen LF, Chen XD, Zhang XF, Agarwal K (2011) Guiding terahertz waves by a single row of periodic holes on a planar metal surface. Plasmonics 6:301–305

    Article  Google Scholar 

  21. Jiang T, Shen LF, Wu JJ, Yang TJ, Ruan ZC, Ran LX (2011) Realization of tightly confined channel plasmon polaritons at low frequencies. Appl Phys Lett 99:261103

    Article  Google Scholar 

  22. Stabellini L, Carras M, Rossi AD, Bellanca G (2008) Design and optimization of high-Q surface mode cavities on patterned metallic surfaces. IEEE J Quantum Electron 44:905–910

    Article  CAS  Google Scholar 

  23. Ordal MA, Long LL, Bell RJ, Bell SE, Bell RR, Alexander RW Jr, Ward CA (1983) Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. Appl Opt 22:4493–4499

    Article  Google Scholar 

  24. Kong JA (2005) Electromagnetic wave theory. Cambridge, MA

Download references

Acknowledgements

This work was supported by the National Natural Science Foundations of China under grant numbers 60971062 and 60971059 and by the National Science Council of ROC under grant numbers NSC 100-2112-M-216 -002 and NSC 100-2221-E-216 -015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, Z., Shen, L., Zheng, X. et al. Terahertz Plasmonic Microcavity with High Quality Factor and Ultrasmall Mode Volume. Plasmonics 8, 319–324 (2013). https://doi.org/10.1007/s11468-012-9392-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-012-9392-y

Keywords

Navigation