Skip to main content
Log in

Experimental and modeling studies on number and size spectrum evolutions of aerosol particles within a chamber

  • Articles
  • Mechanics
  • Published:
Chinese Science Bulletin

Abstract

A size-specific aerosol dynamic model is set up to predict the evolution of particle number concentration within a chamber. Particle aggregation is based on the theory of Brownian coagulation, and the model not only comprises particle loss due to coagulation, but also considers the formation of large particles by collision. To validate the model, three different groups of chamber experiments with SMPS (Scanning Mobility Particle Sizer) are conducted. The results indicate that the advantage of the model over the past simple size bin model is its provision of detailed information of size spectrum evolution, and the results can be used to analyze the variations of number concentration and CMD (Count Median Diameter). Furthermore, some aerosol dynamic mechanisms that cannot be measured by instrument can be analyzed by the model simulation, which is significant for better understanding the removal and control mechanisms of ultrafine particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang W, Liu H J, Yue X, et al. Study on size distributions of airborne particles by aircraft observation in spring over eastern coastal areas of China. Adv Atmos Sci, 2005, 22(3): 328–326

    Article  CAS  Google Scholar 

  2. Zhang R J, Wang M X, Fu J Z. Preliminary research on the size distribution of aerosols in Beijing. Adv Atmos Sci, 2001, 18(2): 225–230.

    Google Scholar 

  3. Wagner P E, Kreyling W G, Semmler M, et al. Health effects of ultrafine particles. J Aerosol Sci, 2004, 35(Suppl 2): 1155–1156.

    Article  Google Scholar 

  4. Donaldson K D, Brown A, Clouter R, et al. The pulmonary toxicology of ultrafine particles. J Aerosol Med, 2002, 15(2): 213–220

    Article  PubMed  CAS  Google Scholar 

  5. Thatcher T L, Layton D W. Deposition, resuspension, and penetration of particles within a residence. Atmos Environ, 1995, 29(13): 1487–1497

    Article  CAS  Google Scholar 

  6. Nazaroff W W, Cass G R. Mathematical modelling of indoor aerosol dynamics. Environ Sci Tech, 1989, 23(2): 157–166

    Article  CAS  Google Scholar 

  7. Morawska L, He C, Hitchins J, et al. Characteristics of particle number and mass concentrations in residential houses in Brisbane, Australia. Atmos Environ, 2003, 37(30): 4195–4203

    Article  CAS  Google Scholar 

  8. Lai A C K, Nazaroff W W. Modeling indoor particle deposition from turbulent flow onto smooth surfaces. J Aerosol Sci, 2000, 31(4): 463–476

    Article  CAS  Google Scholar 

  9. Wexler A S, Lurmann F W, Seinfeld J H. Modelling urban and regional aerosols I. Model development. Atmos Environ, 1994, 28(3): 531–546

    Article  CAS  Google Scholar 

  10. Max Zhang K, Wexler A S. Modeling the number distributions of urban and regional aerosols: Theoretical foundations. Atmos Environ, 2002, 36(11): 1863–1874

    Article  Google Scholar 

  11. Kittelson D B. Engines and nanoparticles: A review. J Aerosol Sci, 1998, 29(5–6): 575–588

    Article  CAS  Google Scholar 

  12. Gidhagen L, Johansson C, Strom J, et al. Model simulation of ultrafine particles inside a road tunnel. Atmos Environ, 2003, 37(15): 2023–2036

    Article  CAS  Google Scholar 

  13. Pyykönen J, Jokiniemi J. Computational fluid dynamics based sectional aerosol modelling schemes. J Aerosol Sci, 2000, 31(5): 531–550

    Article  Google Scholar 

  14. Fuchs N A. The Mechanics of Aerosols. London Pergamon Press, 1964

    Google Scholar 

  15. Hinds W C. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. New York: John Wiley & Sons Inc, 1982

    Google Scholar 

  16. Lai A C K. Particle deposition indoors: A review. Indoor Air, 2002, 12: 211–214

    Article  PubMed  CAS  Google Scholar 

  17. Morawska L, Jamriska M, Bofinger N D. Size characteristics and ageing of the environmental tobacco smoke. Sci Total Environ, 1997, 196(1): 43–55

    Article  CAS  Google Scholar 

  18. Fine P M, Cass G R, Simoneit B R T. Characterization of fine particle emissions from burning church candles. Environ Sci Tech, 1999, 33: 2352–2362

    Article  CAS  Google Scholar 

  19. Klepeis N E, Apte M G, Gundel L A, et al. Determining size-specific emission factors for environmental tobacco smoke particles. Aerosol Sci Tech, 2003, 37: 780–790

    Article  CAS  Google Scholar 

  20. Sun Z, Huang Z, Wang J S. Studies on the size distribution, number and mass emission factors of candle particles characterized by modes of burning. J Aerosol Sci, 2006, 37(11): 1484–1496

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun Zai.

About this article

Cite this article

Sun, Z., Huang, Z. & Wang, J. Experimental and modeling studies on number and size spectrum evolutions of aerosol particles within a chamber. CHINESE SCI BULL 52, 1302–1306 (2007). https://doi.org/10.1007/s11434-007-0180-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-007-0180-6

Keywords

Navigation