Journal of Natural Medicines

, Volume 65, Issue 1, pp 241–246 | Cite as

Inhibitory effects of ginger (Zingiber officinale Roscoe) essential oil on leukocyte migration in vivo and in vitro

  • Gessilda Alcantara Nogueira de Melo
  • Renata Grespan
  • Jefferson Pitelli Fonseca
  • Thiago Oliveira Farinha
  • Expedito Leite da Silva
  • Adriano Lopes Romero
  • Ciomar A. Bersani-Amado
  • Roberto Kenji Nakamura CumanEmail author


Zingiber officinale Roscoe, popular name ginger, is grown naturally in many parts of the world, including Brazil. Ginger is used in pharmaceutical, cosmetic, and food and beverage industries and the essential oil has been used in folk medicine for manifold conditions including as an analgesic, anti-inflammatory, and antirheumatic. The purpose of this study was to investigate the effects of ginger (Zingiber officinale Roscoe) essential oil (GEO) in an in vitro chemotaxis assay and on leukocyte–endothelial interactions in vivo. GEO was analyzed by GC–MS and the main components identified were ar-curcumene (59%), β-myrcene (14%), 1,8-cineol (8%), citral (7.5%), and zingiberene (7.5%). Oral administration of GEO (200–500 mg/kg) reduced the rolling and leukocyte adherence after 2 h of carrageenan injection (100 μg) into the scrotal chamber. The number of leukocytes migrated to the perivascular tissue 4 h after the irritant stimulus was also diminished. GEO in all doses tested (10−4, 10−3, or 10−2 μL/mL) caused a significant reduction of leukocyte chemotaxis (35.89 ± 4.33, 30.67 ± 0.70, and 35.85 ± 3.83%, respectively) toward casein stimuli. The data presented showed direct and systemic effects of GEO on leukocyte migration as an important mechanism of the anti-inflammatory action of ginger.


Chemotaxis Essential oil Leukocyte migration Ginger Zingiber officinale Roscoe 



This study was supported by grants from CAPES (Coordenadoria de Aperfeiçoamento de Pessoal de Nível Superior) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), Brazil. We thank Mr. Jailson Araujo Dantas and Mrs. Celia Regina Miranda for technical assistance.

Conflict of interest

All the authors declare that they have no potential conflicts of interest associated with any work submitted for publication.


  1. 1.
    Dusan F, Marián S, Katarína D, Dobroslava B (2006) Essential oils—their antimicrobial activity against Escherichia coli and effect on intestinal cell viability. Toxicol In Vitro 20:1435–1445PubMedCrossRefGoogle Scholar
  2. 2.
    Barnes J (2003) Quality, efficacy and safety of complementary medicines: fashions, facts and the future—Part I—regulation and quality. Br J Clin Pharmacol 55:331–340PubMedCrossRefGoogle Scholar
  3. 3.
    Ali BH, Blunden G, Tanira MO, Nemmar A (2008) Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): a review of recent research. Food Chem Toxicol 46:409–420PubMedCrossRefGoogle Scholar
  4. 4.
    Daferera DJ, Tarantilis PA, Polissiou MG (2002) Characterization of essential oils from Lamiaceae species by Fourier transform Raman spectroscopy. Agric Food Chem 50(20):5503–5507CrossRefGoogle Scholar
  5. 5.
    Shukla Y, Singh M (2007) Cancer preventive properties of ginger: a brief review. Food Chem Toxicol 45:683–690PubMedCrossRefGoogle Scholar
  6. 6.
    Vendruscolo A, Bersani-Amado LE, Dantas JA, Bersani-Amado CA, Cuman RK (2006) Antiinflammatory and antinociceptive activities of Zingiber officinale Roscoe essential oil in experimental animal models. Indian J Pharmacol 38:58–59CrossRefGoogle Scholar
  7. 7.
    Carrasco FR, Schmidt G, Romero AL, Sartoretto JL, Caparroz-Assef SM, Bersani-Amado CA, Cuman RK (2009) Immunomodulatory activity of Zingiber officinale Roscoe, Salvia officinalis L. and Syzygium aromaticum L. essential oils: evidence for humor- and cell-mediated responses. J Pharm Pharmacol 61:961–967PubMedGoogle Scholar
  8. 8.
    Adams RP (2001) Identification of essential oil components by gas chromatography/quadrupole mass spectroscopy. Allured, IllinoisGoogle Scholar
  9. 9.
    Calixto JB, Campos MM, Otuki MF, Santos ARS (2004) Antiinflammatory compounds of plant origin. Part II. Modulation of pro-inflammatory cytokines, chemokines and adhesion molecules. Planta Med 70:93–103PubMedCrossRefGoogle Scholar
  10. 10.
    Lee SK, Hong CH, Huh SK, Kim SS, Oh OJ, Min HY, Park KK, Chung WY, Hwang JK (2002) Suppressive effect of natural sesquiterpenoids on inducible cyclooxygenase (COX-2) and nitric oxide synthase (iNOS) activity in mouse macrophage cells. J Environ Pathol Toxicol Oncol 21:141–148PubMedGoogle Scholar
  11. 11.
    Santos FA, Rao VSN (2000) Antiinflammatory and antinociceptive effects of 1,8-cineole a terpenoid oxide present in many plant essential oils. Phytother Res 14:240–244PubMedCrossRefGoogle Scholar
  12. 12.
    Juergens UR, Stober M, Schmidt-Schilling L, Kleuver T, Vetter H (1998) Antiinflammatory effects of eucalyptol (1.8-cineole) in bronchial asthma: inhibition of arachidonic acid metabolism in human blood monocytes ex vivo. Eur J Med Res 3:407–412PubMedGoogle Scholar
  13. 13.
    Juergens UR, Engelen T, Racké K, Stöber M, Gillissen A, Vetter H (2004) Inhibitory activity of 1,8-cineol (eucalyptol) on cytokine production in cultured human lymphocytes and monocytes. Pul Pharmacol Ther 17:281–287CrossRefGoogle Scholar
  14. 14.
    Juergens UR, Stober M, Vetter H (1998) Inhibition of cytokine production and arachidonic acid metabolism by eucalyptol (1.8-cineole) in human blood monocytes in vitro. Eur J Med Res 3:508–510PubMedGoogle Scholar
  15. 15.
    Silva J, Abebeb W, Sousa SM, Duarte VG, Machado MIL, Matos FJA (2003) Analgesic and anti-inflammatory effects of essential oils of Eucalyptus. J Ethnopharmacol 89:277–283PubMedCrossRefGoogle Scholar
  16. 16.
    Lee JY, Kang HS, Park BE, Moon HJ, Sim SS, Kim CJ (2009) Inhibitory effects of Geijigajakyak-Tang on trinitrobenzene sulfonic acid-induced colitis. J Ethnopharmacol 126:244–251PubMedCrossRefGoogle Scholar
  17. 17.
    Serhan CN (2007) Resolution phase of inflammation: novel endogenous anti-inflammatory and proresolving lipid mediators and pathways. Annu Rev Immunol 25:101–137PubMedCrossRefGoogle Scholar
  18. 18.
    Cassatella MA (1995) The production of cytokines by polymorphonuclear neutrophils. Immunol Today 16:21–26PubMedCrossRefGoogle Scholar
  19. 19.
    Moore AR, Iwamura H, Larbre JP, Scott DL, Willoughby DA (1993) Cartilage degradation by polymorphonuclear leucocytes: in vitro assessment of the pathogenic mechanisms. Ann Rheum Dis 52:27–31PubMedCrossRefGoogle Scholar
  20. 20.
    Wipke BT, Allen PM (2001) Essential role of neutrophils in the initiation and progression of a murine model of rheumatoid arthritis. J Immunol 167:1601–1608PubMedGoogle Scholar
  21. 21.
    Lloyd AR, Oppenheim JJ (1992) Poly’s lament: the neglected role of the polymorphonuclear neutrophil in the afferent limb of the immune response. Immunol Today 13:69–72CrossRefGoogle Scholar
  22. 22.
    Edwards SW, Hallett MB (1997) Seeing the wood for the trees: the forgotten role of neutrophils in rheumatoid arthritis. Immunol Today 18:320–324PubMedCrossRefGoogle Scholar
  23. 23.
    Dell’Aica I, Niero R, Piazza F, Cabrelle A, Sartor L, Colalto C, Brunetta E, Lorusso G, Benelli R, Albini A, Calabrese F, Agostini C, Garbisa S (2007) Hyperforin blocks neutrophil activation of matrix metalloproteinase-9, motility and recruitment, and restrains inflammation-triggered angiogenesis and lung fibrosis. J Pharmacol Exp Ther 321:492–500PubMedCrossRefGoogle Scholar
  24. 24.
    Kumasaka R, Nakamura N, Fujita T, Murakami R, Shimada M, Osawa H, Yamabe H, Okumura K (2008) Beneficial effect of neutrophil elastase inhibitor on anti-Thy1.1 nephritis in rats. Nephrology 13:27–32PubMedGoogle Scholar
  25. 25.
    Riccioni G, Zanasi A, Vitulano N, Mancini B, D’Orazio N (2009) Leukotrienes in atherosclerosis: new target insights and future therapy perspectives. Mediators Inflamm 2009;ID737282Google Scholar
  26. 26.
    Smith CW (1993) Endothelial adhesion molecules and their role in inflammation. Can J Physiol Pharm 71:76–87Google Scholar
  27. 27.
    Mulder K, Colditz IG (1993) Migratory responses of ovine neutrophils to inflammatory mediators in vitro and in vivo. J Leukoc Biol 53:273–278PubMedGoogle Scholar
  28. 28.
    Roussel L, Houle F, Chan C, Yao Y, Bérubé J, Olivenstein R, Martin JG, Huot J, Hamid Q, Ferri L, Rousseau S (2010) IL-17 promotes p38 MAPK-dependent endothelial activation enhancing neutrophil recruitment to sites of inflammation. J Immunol 184:4531–4537PubMedCrossRefGoogle Scholar
  29. 29.
    Li L, Huang L, Vergis AL, Ye H, Bajwa A, Narayan V, Strieter RM, Rosin DL, Okusa MD (2010) IL-17 produced by neutrophils regulates IFN-gamma-mediated neutrophil migration in mouse kidney ischemia-reperfusion injury. J Clin Invest 120:331–342PubMedCrossRefGoogle Scholar
  30. 30.
    Lemos HP, Grespan R, Vieira SM, Cunha TM, Verri WA Jr, Fernandes KS, Souto FO, McInnes IB, Ferreira SH, Liew FY, Cunha FQ (2009) Prostaglandin mediates IL-23/IL-17-induced neutrophil migration in inflammation by inhibiting IL-12 and IFNgamma production. Proc Natl Acad Sci U S A 106:5954–5959PubMedCrossRefGoogle Scholar
  31. 31.
    Hirota R, Roger NN, Nakamura H, Song H-S, Sawamura M, Suganuma N (2010) Anti-inflammatory effects of Limonene from Yuzu (Citrus junos Tanaka) essential oil on eosinophils. J Food Sci 75:H87–H92PubMedCrossRefGoogle Scholar
  32. 32.
    Kwok BHB, Koh B, Ndubuisi MI, Elofsson M, Crews CM (2001) The anti-inflammatory natural product parthenolide from the medicinal herb Feverfew directly binds to and inhibits IκB kinase. Chem Biol 8:759–766PubMedCrossRefGoogle Scholar
  33. 33.
    Nicolete R, Arakawa NS, Rius C, Nomizo A, Jose PJ, Da Costa FB, Sanz M, Faccioli LH (2009) Budlein A from Viguiera robusta inhibits leukocyte–endothelial cell interactions, adhesion molecule expression and inflammatory mediators release. Phytomedicine 16:904–915PubMedCrossRefGoogle Scholar
  34. 34.
    Tamura EK, Jimenez RS, Waismam K, Gobbo-Neto L, Lopes NP, Malpezzi-Marinho EAL, Marinho EAV, Farsky SHP (2009) Inhibitory effects of Solidago chilensis Meyen hydroalcoholic extract on acute inflammation. J Ethnopharmacol 122:478–48516PubMedCrossRefGoogle Scholar
  35. 35.
    Diaz-Gonzalez F, Gonzalez-Alvaro I, Campanero MR, Mollinedo F, del Pozo MA, Munoz C, Pivel JP, Sinchez-Madrid F (1995) Prevention of in vitro neutrophil-endothelial attachment through shedding of L-selectin by nonsteroidal antiinflammatory Drugs. J Clin Invest 95:1756–1765PubMedCrossRefGoogle Scholar
  36. 36.
    Sakai A (1996) Diclofenac inhibits endothelial cell adhesion molecule expression induced with lipopolysaccharide. Life Sci 58(26):2377–2387PubMedCrossRefGoogle Scholar
  37. 37.
    Srivastava KC (1986) Isolation and effects of some ginger components of platelet aggregation and eicosanoid biosynthesis. Prostaglandins Leukot Med 25:187–198PubMedCrossRefGoogle Scholar
  38. 38.
    Flynn DL, Rafferty MF, Boctor AM (1986) Inhibition of human neutrophil 5-lipoxygenase activity by gingerdione, shogaol, capsaicin and related pungent compounds. Prostaglandins Leukot Med 24:195–198PubMedCrossRefGoogle Scholar
  39. 39.
    Tjendraputra E, Tran VH, Liu-Brennan D, Roufogalis BD, Duke CC (2001) Effect of ginger constituents and synthetic analogues on cyclooxygenase-2 enzyme in intact cells. Bioorg Chem 29:156–163PubMedCrossRefGoogle Scholar
  40. 40.
    Chrubasik S, Pittler MH, Roufogalis BD (2005) Zingiberis rhizoma: a comprehensive review on the ginger effect and efficacy profiles. Phytomedicine 12:684–701PubMedCrossRefGoogle Scholar
  41. 41.
    Menezes GB, Reis WGP, Santos JMM, Duarte IDG, Francischi JN (2005) Inhibition of prostaglandin F2α by selective cyclooxygenase 2 inhibitors accounts for reduced rat leukocyte migration. Inflammation 29:163–169PubMedCrossRefGoogle Scholar
  42. 42.
    Menezes GB, Rezende RM, Pereira-Silva PEM, Klein A, Cara DC, Francischi JN (2008) Differential involvement of cyclooxygenase isoforms in neutrophil migration in vivo and in vitro. Eur J Pharmacol 598:118–122PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer 2010

Authors and Affiliations

  • Gessilda Alcantara Nogueira de Melo
    • 1
  • Renata Grespan
    • 1
  • Jefferson Pitelli Fonseca
    • 1
  • Thiago Oliveira Farinha
    • 1
  • Expedito Leite da Silva
    • 2
  • Adriano Lopes Romero
    • 2
  • Ciomar A. Bersani-Amado
    • 1
  • Roberto Kenji Nakamura Cuman
    • 1
    Email author
  1. 1.Department of Pharmacy and PharmacologyState University of MaringáMaringáBrazil
  2. 2.Department of ChemistryState University of MaringáMaringáBrazil

Personalised recommendations