, 36:9703 | Cite as

Age-dependent modifications in vascular adhesion molecules and apoptosis after 48-h reperfusion in a rat global cerebral ischemia model

  • Berta Anuncibay-Soto
  • Diego Pérez-Rodríguez
  • Irene L Llorente
  • Marta Regueiro-Purriños
  • José Manuel Gonzalo-Orden
  • Arsenio Fernández-LópezEmail author


Stroke is one of the leading causes of death and permanent disability in the elderly. However, most of the experimental studies on stroke are based on young animals, and we hypothesised that age can substantially affect the stroke response. The two-vessel occlusion model of global ischemia by occluding the common carotid arteries for 15 min at 40 mmHg of blood pressure was carried out in 3- and 18-month-old male Sprague–Dawley rats. The adhesion molecules E- and P-selectin, cell adhesion molecules (CAMs), both intercellular (ICAM-1) and vascular (VCAM-1), as well as glial fibrillary acidic protein (GFAP), and cleaved caspase-3 were measured at 48 h after ischemia in the cerebral cortex and hippocampus using Western blot, qPCR and immunofluorescence techniques. Diametric expression of GFAP and a different morphological pattern of caspase-3 labelling, although no changes in the cell number, were observed in the neurons of young and old animals. Expression of E-selectin and CAMs was also modified in an age- and ischemia/reperfusion-dependent manner. The hippocampus and cerebral cortex had similar response patterns for most of the markers studied. Our data suggest that old and young animals present different time-courses of neuroinflammation and apoptosis after ischemic damage. On the other hand, these results suggest that neuroinflammation is dependent on age rather than on the different vulnerability described for the hippocampus and cerebral cortex. These differences should be taken into account in searching for therapeutic targets.


Ischemia Age Inflammation Apoptosis GFAP Selectins CAMs 



Blood–brain barrier


Bovine serum albumin


Cornu Ammonis


Cellular adhesion molecules






Glial fibrillary acidic protein




Intercellular adhesion molecule


Middle cerebral artery occlusion


Magnetic resonance imaging




Buffer sodium phosphate with Triton X-100


Tris-buffered saline 50 mM with Tween-20 0.2 %


Vascular adhesion molecule



We wish to thank Marta Fernandez Caso from the University of Leon for technical support and personal help. This study was supported by Junta of Castilla of León (LE184A12-2). Diego Pérez Rodríguez is granted by Junta de Castilla y León (EDU/346/2013)

Conflict of interest

The authors declare that they have no conflict of interests.


  1. Amor S, Puentes F, Baker D, van der Valk P (2010) Inflammation in neurodegenerative diseases. Immunology 129:154–169PubMedCrossRefPubMedCentralGoogle Scholar
  2. Anthony DC, Bolton SJ, Fearn S, Perry VH (1997) Age-related effects of interleukin-1 beta on polymorphonuclear neutrophil-dependent increases in blood–brain barrier permeability in rats. Brain 120(Pt 3):435–444PubMedCrossRefGoogle Scholar
  3. Anyanwu EC (2007) Neurochemical changes in the aging process: implications in medication in the elderly. Sci World J 7:1603–1610CrossRefGoogle Scholar
  4. Arumugam TV, Phillips TM, Cheng A, Morrell CH, Mattson MP, Wan R (2010) Age and energy intake interact to modify cell stress pathways and stroke outcome. Ann Neurol 67:41–52PubMedCrossRefPubMedCentralGoogle Scholar
  5. Ayuso MI, Garcia-Bonilla L, Martin ME, Salinas M (2010) Assessment of protein expression levels after transient global cerebral ischemia using an antibody microarray analysis. Neurochem Res 35:1239–1247PubMedCrossRefGoogle Scholar
  6. Back T (1998) Pathophysiology of the ischemic penumbra—revision of a concept. Cell Mol Neurobiol 18:621–638PubMedCrossRefGoogle Scholar
  7. Badan I, Platt D, Kessler C, Popa-Wagner A (2003) Temporal dynamics of degenerative and regenerative events associated with cerebral ischemia in aged rats. Gerontology 49:356–365PubMedCrossRefGoogle Scholar
  8. Bala K, Tripathy BC, Sharma D (2006) Neuroprotective and anti-ageing effects of curcumin in aged rat brain regions. Biogerontology 7:81–89PubMedCrossRefGoogle Scholar
  9. Barkalow FJ, Goodman MJ, Gerritsen ME, Mayadas TN (1996) Brain endothelium lack one of two pathways of P-selectin-mediated neutrophil adhesion. Blood 88:4585–4593PubMedGoogle Scholar
  10. Bendel O, Alkass K, Bueters T, von Euler M, von Euler G (2005) Reproducible loss of CA1 neurons following carotid artery occlusion combined with halothane-induced hypotension. Brain Res 1033:135–142PubMedCrossRefGoogle Scholar
  11. Blamire AM, Anthony DC, Rajagopalan B, Sibson NR, Perry VH, Styles P (2000) Interleukin-1beta-induced changes in blood–brain barrier permeability, apparent diffusion coefficient, and cerebral blood volume in the rat brain: a magnetic resonance study. J Neurosci 20:8153–8159PubMedGoogle Scholar
  12. Buga AM, Di Napoli M, Popa-Wagner A (2013) Preclinical models of stroke in aged animals with or without comorbidities: role of neuroinflammation. Biogerontology 14:651–662PubMedCrossRefGoogle Scholar
  13. Busch SA, Silver J (2007) The role of extracellular matrix in CNS regeneration. Curr Opin Neurobiol 17:120–127PubMedCrossRefGoogle Scholar
  14. Cacheaux LP, Ivens S, David Y, Lakhter AJ, Bar-Klein G, Shapira M, Heinemann U, Friedman A, Kaufer D (2009) Transcriptome profiling reveals TGF-beta signaling involvement in epileptogenesis. J Neurosci 29:8927–8935PubMedCrossRefPubMedCentralGoogle Scholar
  15. Candelario-Jalil E (2009) Injury and repair mechanisms in ischemic stroke: considerations for the development of novel neurotherapeutics. Curr Opin Investig Drugs 10:644–654PubMedGoogle Scholar
  16. Colangelo AM, Alberghina L, Papa M (2014) Astrogliosis as a therapeutic target for neurodegenerative diseases. Neurosci LettGoogle Scholar
  17. Collins TC, Petersen NJ, Menke TJ, Souchek J, Foster W, Ashton CM (2003) Short-term, intermediate-term, and long-term mortality in patients hospitalized for stroke. J Clin Epidemiol 56:81–87PubMedCrossRefGoogle Scholar
  18. Dijkhuizen RM, Knollema S, van der Worp HB, Ter Horst GJ, De Wildt DJ, Berkelbach van der Sprenkel JW, Tulleken KA, Nicolay K (1998) Dynamics of cerebral tissue injury and perfusion after temporary hypoxia-ischemia in the rat: evidence for region-specific sensitivity and delayed damage. Stroke 29:695–704PubMedCrossRefGoogle Scholar
  19. Donnan GA, Fisher M, Macleod M, Davis SM (2008) Stroke. Lancet 371:1612–1623PubMedCrossRefGoogle Scholar
  20. Durukan A, Tatlisumak T (2007) Acute ischemic stroke: overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia. Pharmacol Biochem Behav 87:179–197PubMedCrossRefGoogle Scholar
  21. Duverger D, MacKenzie ET (1988) The quantification of cerebral infarction following focal ischemia in the rat: influence of strain, arterial pressure, blood glucose concentration, and age. J Cereb Blood Flow Metab 8:449–461PubMedCrossRefGoogle Scholar
  22. Dziennis S, Mader S, Akiyoshi K, Ren X, Ayala P, Burrows GG, Vandenbark AA, Herson PS, Hurn PD, Offner HA (2011) Therapy with recombinant T-cell receptor ligand reduces infarct size and infiltrating inflammatory cells in brain after middle cerebral artery occlusion in mice. Metab Brain Dis 26:123–133PubMedCrossRefPubMedCentralGoogle Scholar
  23. Dziewulska D (1997) Age-dependent changes in astroglial reactivity in human ischemic stroke. Immunohistochemical study. Folia Neuropathol 35:99–106PubMedGoogle Scholar
  24. Eckle VS, Buchmann A, Bursch W, Schulte-Hermann R, Schwarz M (2004) Immunohistochemical detection of activated caspases in apoptotic hepatocytes in rat liver. Toxicol Pathol 32:9–15PubMedCrossRefGoogle Scholar
  25. Fan W, Dai Y, Xu H, Zhu X, Cai P, Wang L, Sun C, Hu C, Zheng P, Zhao BQ (2014) Caspase-3 modulates regenerative response after stroke. Stem Cells 32:473–486PubMedCrossRefGoogle Scholar
  26. Fricker M, Vilalta A, Tolkovsky AM, Brown GC (2013) Caspase inhibitors protect neurons by enabling selective necroptosis of inflamed microglia. J Biol Chem 288:9145–9152PubMedCrossRefPubMedCentralGoogle Scholar
  27. Gelderblom M, Leypoldt F, Steinbach K, Behrens D, Choe CU, Siler DA, Arumugam TV, Orthey E, Gerloff C, Tolosa E, Magnus T (2009) Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke 40:1849–1857PubMedCrossRefGoogle Scholar
  28. Ginsberg MD, Pulsinelli WA (1994) The ischemic penumbra, injury thresholds, and the therapeutic window for acute stroke. Ann Neurol 36:553–554PubMedCrossRefGoogle Scholar
  29. Gotsch U, Jager U, Dominis M, Vestweber D (1994) Expression of P-selectin on endothelial cells is upregulated by LPS and TNF-alpha in vivo. Cell Adhes Commun 2:7–14PubMedCrossRefGoogle Scholar
  30. He Z, Meschia JF, Brott TG, Dickson DW, McKinney M (2006) Aging is neuroprotective during global ischemia but leads to increased caspase-3 and apoptotic activity in hippocampal neurons. Curr Neurovasc Res 3:181–186PubMedCrossRefGoogle Scholar
  31. Hossmann KA (1994) Viability thresholds and the penumbra of focal ischemia. Ann Neurol 36:557–565PubMedCrossRefGoogle Scholar
  32. Ivens S, Kaufer D, Flores LP, Bechmann I, Zumsteg D, Tomkins O, Seiffert E, Heinemann U, Friedman A (2007) TGF-beta receptor-mediated albumin uptake into astrocytes is involved in neocortical epileptogenesis. Brain 130:535–547PubMedCrossRefGoogle Scholar
  33. Jin R, Yang G, Li G (2010) Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukoc Biol 87:779–789PubMedCrossRefPubMedCentralGoogle Scholar
  34. Kadhim HJ, Duchateau J, Sebire G (2008) Cytokines and brain injury: invited review. J Intensive Care Med 23:236–249PubMedCrossRefGoogle Scholar
  35. Kirino T, Tamura A, Sano K (1985) Selective vulnerability of the hippocampus to ischemia—reversible and irreversible types of ischemic cell damage. Prog Brain Res 63:39–58PubMedCrossRefGoogle Scholar
  36. Kriz J, Lalancette-Hebert M (2009) Inflammation, plasticity and real-time imaging after cerebral ischemia. Acta Neuropathol 117:497–509PubMedCrossRefGoogle Scholar
  37. Lakhan SE, Kirchgessner A, Hofer M (2009) Inflammatory mechanisms in ischemic stroke: therapeutic approaches. J Transl Med 7:97PubMedCrossRefPubMedCentralGoogle Scholar
  38. Lalonde CC, Mielke JG (2014) Selective vulnerability of hippocampal sub-fields to oxygen-glucose deprivation is a function of animal age. Brain Res 1543:271–279PubMedCrossRefGoogle Scholar
  39. Li Y, Powers C, Jiang N, Chopp M (1998) Intact, injured, necrotic and apoptotic cells after focal cerebral ischemia in the rat. J Neurol Sci 156:119–132PubMedCrossRefGoogle Scholar
  40. Li C, Zhao R, Gao K, Wei Z, Yin MY, Lau LT, Chui D, Hoi Yu AC (2011) Astrocytes: implications for neuroinflammatory pathogenesis of Alzheimer’s disease. Curr Alzheimer Res 8:67–80PubMedCrossRefGoogle Scholar
  41. Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79:1431–1568PubMedGoogle Scholar
  42. Liu F, McCullough LD (2011) Middle cerebral artery occlusion model in rodents: methods and potential pitfalls. J Biomed Biotechnol 2011:464701PubMedPubMedCentralGoogle Scholar
  43. Liu F, McCullough LD (2012) Interactions between age, sex, and hormones in experimental ischemic stroke. Neurochem Int 61:1255–1265PubMedCrossRefPubMedCentralGoogle Scholar
  44. Liu F, Benashski SE, Persky R, Xu Y, Li J, McCullough LD (2012) Age-related changes in AMP-activated protein kinase after stroke. Age (Dordr) 34:157–168CrossRefGoogle Scholar
  45. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25:402–408PubMedCrossRefGoogle Scholar
  46. Llorente IL, Burgin TC, Perez-Rodriguez D, Martinez-Villayandre B, Perez-Garcia CC, Fernandez-Lopez A (2013) Unfolded protein response to global ischemia following 48 h of reperfusion in the rat brain: the effect of age and meloxicam. J Neurochem 127(5):701–710Google Scholar
  47. McIntosh CT, Warnock JN (2013) Side-specific characterization of aortic valve endothelial cell adhesion molecules under cyclic strain. J Heart Valve Dis 22:631–639PubMedGoogle Scholar
  48. Mehta SL, Manhas N, Raghubir R (2007) Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Rev 54:34–66PubMedCrossRefGoogle Scholar
  49. Meisel C, Schwab JM, Prass K, Meisel A, Dirnagl U (2005) Central nervous system injury-induced immune deficiency syndrome. Nat Rev Neurosci 6:775–786PubMedCrossRefGoogle Scholar
  50. Montori S, Dos Anjos S, Rios-Granja MA, Perez-Garcia CC, Fernandez-Lopez A, Martinez-Villayandre B (2010a) AMPA receptor downregulation induced by ischaemia/reperfusion is attenuated by age and blocked by meloxicam. Neuropathol Appl Neurobiol 36:436–447PubMedCrossRefGoogle Scholar
  51. Montori S, Martinez-Villayandre B, Dos-Anjos S, Llorente IL, Burgin TC, Fernandez-Lopez A (2010b) Age-dependent modifications in the mRNA levels of the rat excitatory amino acid transporters (EAATs) at 48 hour reperfusion following global ischemia. Brain Res 1358:11–19PubMedCrossRefGoogle Scholar
  52. Montori S, Dos-Anjos S, Martinez-Villayandre B, Regueiro-Purrinos MM, Gonzalo-Orden JM, Ruano D, Fernandez-Lopez A (2010c) Age and meloxicam attenuate the ischemia/reperfusion-induced down-regulation in the NMDA receptor genes. Neurochem Int 56:878–885PubMedCrossRefGoogle Scholar
  53. Nedergaard M, Gjedde A, Diemer NH (1986) Focal ischemia of the rat brain: autoradiographic determination of cerebral glucose utilization, glucose content, and blood flow. J Cereb Blood Flow Metab 6:414–424PubMedCrossRefGoogle Scholar
  54. Perry VH, Anthony DC, Bolton SJ, Brown HC (1997) The blood–brain barrier and the inflammatory response. Mol Med Today 3:335–341PubMedCrossRefGoogle Scholar
  55. Petri B, Phillipson M, Kubes P (2008) The physiology of leukocyte recruitment: an in vivo perspective. J Immunol 180:6439–6446PubMedCrossRefGoogle Scholar
  56. Popa-Wagner A, Dinca I, Yalikun S, Walker L, Kroemer H, Kessler C (2006) Accelerated delimitation of the infarct zone by capillary-derived nestin-positive cells in aged rats. Curr Neurovasc Res 3:3–13PubMedCrossRefGoogle Scholar
  57. Popa-Wagner A, Badan I, Walker L, Groppa S, Patrana N, Kessler C (2007) Accelerated infarct development, cytogenesis and apoptosis following transient cerebral ischemia in aged rats. Acta Neuropathol 113:277–293PubMedCrossRefGoogle Scholar
  58. Rami A, Bechmann I, Stehle JH (2008) Exploiting endogenous anti-apoptotic proteins for novel therapeutic strategies in cerebral ischemia. Prog Neurobiol 85:273–296PubMedCrossRefGoogle Scholar
  59. Rojas JI, Zurru MC, Romano M, Patrucco L, Cristiano E (2007) Acute ischemic stroke and transient ischemic attack in the very old-risk factor profile and stroke subtype between patients older than 80 years and patients aged less than 80 years. Eur J Neurol 14:895–899PubMedCrossRefGoogle Scholar
  60. Rolls A, Shechter R, Schwartz M (2009) The bright side of the glial scar in CNS repair. Nat Rev Neurosci 10:235–241PubMedCrossRefGoogle Scholar
  61. Rosamond W, Flegal K, Furie K, Go A, Greenlund K, Haase N, Hailpern SM, Ho M, Howard V, Kissela B, Kittner S, Lloyd-Jones D, McDermott M, Meigs J, Moy C, Nichol G, O’Donnell C, Roger V, Sorlie P, Steinberger J, Thom T, Wilson M, Hong Y, American Heart Association Statistics Committee and Stroke Statistics Subcommittee (2008) Heart disease and stroke statistics–2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 117:e25–e146PubMedCrossRefGoogle Scholar
  62. Salas A, Shimaoka M, Phan U, Kim M, Springer TA (2006) Transition from rolling to firm adhesion can be mimicked by extension of integrin alphaLbeta2 in an intermediate affinity state. J Biol Chem 281:10876–10882PubMedCrossRefPubMedCentralGoogle Scholar
  63. Schilling M, Besselmann M, Leonhard C, Mueller M, Ringelstein EB, Kiefer R (2003) Microglial activation precedes and predominates over macrophage infiltration in transient focal cerebral ischemia: a study in green fluorescent protein transgenic bone marrow chimeric mice. Exp Neurol 183:25–33PubMedCrossRefGoogle Scholar
  64. Sinha N, Baquer NZ, Sharma D (2005) Anti-lipidperoxidative role of exogenous dehydroepiendrosterone (DHEA) administration in normal ageing rat brain. Indian J Exp Biol 43:420–424PubMedGoogle Scholar
  65. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35PubMedCrossRefPubMedCentralGoogle Scholar
  66. Stanimirovic D, Satoh K (2000) Inflammatory mediators of cerebral endothelium: a role in ischemic brain inflammation. Brain Pathol 10:113–126PubMedCrossRefGoogle Scholar
  67. Stevens SL, Bao J, Hollis J, Lessov NS, Clark WM, Stenzel-Poore MP (2002) The use of flow cytometry to evaluate temporal changes in inflammatory cells following focal cerebral ischemia in mice. Brain Res 932:110–119PubMedCrossRefGoogle Scholar
  68. Sughrue ME, Mehra A, Connolly ES Jr, D’Ambrosio AL (2004) Anti-adhesion molecule strategies as potential neuroprotective agents in cerebral ischemia: a critical review of the literature. Inflamm Res 53:497–508PubMedCrossRefGoogle Scholar
  69. Tamura A, Graham DI, McCulloch J, Teasdale GM (1981) Focal cerebral ischaemia in the rat: 2. Regional cerebral blood flow determined by [14C]iodoantipyrine autoradiography following middle cerebral artery occlusion. J Cereb Blood Flow Metab 1:61–69PubMedCrossRefGoogle Scholar
  70. Tanaka R, Komine-Kobayashi M, Mochizuki H, Yamada M, Furuya T, Migita M, Shimada T, Mizuno Y, Urabe T (2003) Migration of enhanced green fluorescent protein expressing bone marrow-derived microglia/macrophage into the mouse brain following permanent focal ischemia. Neuroscience 117:531–539PubMedCrossRefGoogle Scholar
  71. Taylor S, Wakem M, Dijkman G, Alsarraj M, Nguyen M (2010) A practical approach to RT-qPCR-Publishing data that conform to the MIQE guidelines. Methods 50:S1–S5PubMedCrossRefGoogle Scholar
  72. Wang Q, Tang XN, Yenari MA (2007) The inflammatory response in stroke. J Neuroimmunol 184:53–68PubMedCrossRefPubMedCentralGoogle Scholar
  73. Wang N, Zhang Y, Wu L, Wang Y, Cao Y, He L, Li X, Zhao J (2013) Puerarin protected the brain from cerebral ischemia injury via astrocyte apoptosis inhibition. Neuropharmacology 79C:282–289Google Scholar
  74. Wasserman JK, Yang H, Schlichter LC (2008) Glial responses, neuron death and lesion resolution after intracerebral hemorrhage in young vs. aged rats. Eur J Neurosci 28:1316–1328PubMedCrossRefGoogle Scholar
  75. World Health Organization (WHO) (2011) The top 10 causes of death. Fact sheet number 310. WHO, GenevaGoogle Scholar
  76. Xu XJ, Plesan A, Yu W, Hao JX, Wiesenfeld-Hallin Z (2001) Possible impact of genetic differences on the development of neuropathic pain-like behaviors after unilateral sciatic nerve ischemic injury in rats. Pain 89:135–145PubMedCrossRefGoogle Scholar
  77. Yilmaz G, Granger DN (2008) Cell adhesion molecules and ischemic stroke. Neurol Res 30:783–793PubMedCrossRefPubMedCentralGoogle Scholar
  78. Yilmaz G, Arumugam TV, Stokes KY, Granger DN (2006) Role of T lymphocytes and interferon-gamma in ischemic stroke. Circulation 113:2105–2112PubMedCrossRefGoogle Scholar
  79. Zarow C, Vinters HV, Ellis WG, Weiner MW, Mungas D, White L, Chui HC (2005) Correlates of hippocampal neuron number in Alzheimer’s disease and ischemic vascular dementia. Ann Neurol 57:896–903PubMedCrossRefPubMedCentralGoogle Scholar
  80. Zhang R, Chopp M, Zhang Z, Jiang N, Powers C (1998) The expression of P- and E-selectins in three models of middle cerebral artery occlusion. Brain Res 785:207–214PubMedCrossRefGoogle Scholar
  81. Zhang M, Li WB, Geng JX, Li QJ, Sun XC, Xian XH, Qi J, Li SQ (2007) The upregulation of glial glutamate transporter-1 participates in the induction of brain ischemic tolerance in rats. J Cereb Blood Flow Metab 27:1352–1368PubMedCrossRefGoogle Scholar

Copyright information

© American Aging Association 2014

Authors and Affiliations

  • Berta Anuncibay-Soto
    • 1
  • Diego Pérez-Rodríguez
    • 1
  • Irene L Llorente
    • 1
  • Marta Regueiro-Purriños
    • 2
  • José Manuel Gonzalo-Orden
    • 2
  • Arsenio Fernández-López
    • 1
    Email author
  1. 1.Área de Biología Celular, Instituto de BiomedicinaUniversidad de LeónLeonSpain
  2. 2.Área de Medicina, Cirugía y Anatomía Veterinaria, Instituto de BiomedicinaUniversidad de LeónLeonSpain

Personalised recommendations