Skip to main content
Log in

Removal of vanadium and palladium ions by adsorption onto magnetic chitosan nanoparticles

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Chitosan (CS), synthesized from chitin chemically extracted from shrimp shells, was used for the synthesis of magnetic chitosan nanoparticles (Fe3O4-CSN), which makes the adsorbent easier to separate. Fe3O4-CSN was used for the removal of toxic metals such as vanadium (V(V)) and palladium (Pd(II)) ions from aqueous solutions. Influencing factors on the adsorption process such as pH, contact time, adsorbent dosage, and agitation speed were investigated. A competitive adsorption of V(V) and Pd(II) ions for the active sites was also studied. The monolayer maximum adsorption capacities (Qm) of 186.6 and 192.3 mg/g were obtained for V(V) and Pd(II) ions, respectively. The pseudo-second-order equation gave the best fit for the kinetic data, implying that chemisorption was the determining step. Freundlich model yielded a much better fit than the other adsorption models assessed (Langmuir, Temkin and Dubinin-Radushkevich). Thus, the adsorption of V(V) and Pd(II) ions onto Fe3O4-CSN is a combination of physical and chemical adsorption, as based on the kinetics and equilibrium study. Generally, physical adsorption is the mechanism that governs the system, while chemical adsorption is the slowest adsorption step that takes place. Thermodynamic studies displayed that the adsorption process was exothermic and spontaneous. Removal efficiencies of 99.9% for V(V) and 92.3% for Pd(II) ions were achieved, implying that Fe3O4-CSN adsorbent had an excellent ability for the removal of the metal ions from real industrial wastewaters without remarkable matrix effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbas M, Kaddour S, Trari M (2014) Kinetic and equilibrium studies of cobalt adsorption on apricot stone activated carbon. J Ind Eng Chem 20:745–751

    Article  CAS  Google Scholar 

  • Acosta R, Fierro V, Martinez de Yuso A et al (2016) Tetracycline adsorption onto activated carbons produced by KOH activation of tyre pyrolysis char. Chemosphere 149:168–176

    Article  CAS  Google Scholar 

  • Ahmadi M, Foladivanda M, Jafarzadeh N et al (2017a) Synthesis of chitosan zero-valent iron nanoparticles-supported for cadmium removal: characterization, optimization and modeling approach. J Water Supply Res Technol 66:116–130

    Article  Google Scholar 

  • Ahmadi M, Hazrati Niari M, Kakavandi B (2017b) Development of maghemite nanoparticles supported on cross-linked chitosan (γ-Fe2O3@CS) as a recoverable mesoporous magnetic composite for effective heavy metals removal. J Mol Liq 248:184–196

    Article  CAS  Google Scholar 

  • Akkaya Sayʇili G, Sayʇili H, Koyuncu F, Güzel F (2015) Development and physicochemical characterization of a new magnetic nanocomposite as an economic antibiotic remover. Process Saf Environ Prot 94:441–451

    Article  Google Scholar 

  • Al-Johani H, Salam MA (2011) Kinetics and thermodynamic study of aniline adsorption by multi-walled carbon nanotubes from aqueous solution. J Colloid Interface Sci 360:760–767

    Article  CAS  Google Scholar 

  • Angar Y, Djelali NE, Kebbouche-Gana S (2017) Investigation of ammonium adsorption on Algerian natural bentonite. Environ Sci Pollut Res 24:11078–11089

    Article  CAS  Google Scholar 

  • Anirudhan TS, Radhakrishnan PG (2010) Adsorptive performance of an amine-functionalized poly(hydroxyethylmethacrylate)-grafted tamarind fruit shell for vanadium(V) removal from aqueous solutions. Chem Eng J 165:142–150

    Article  CAS  Google Scholar 

  • Azari A, Gharibi H, Kakavandi B et al (2017) Magnetic adsorption separation process: an alternative method of mercury extracting from aqueous solution using modified chitosan coated Fe3O4 nanocomposites. J Chem Technol Biotechnol 92:188–200

    Article  CAS  Google Scholar 

  • Azzaz AA, Jellali S, Akrout H, Assadi AA, Bousselmi L (2017) Optimization of a cationic dye removal by a chemically modified agriculture by-product using response surface methodology: biomasses characterization and adsorption properties. Environ Sci Pollut Res 24:9831–9846

    Article  CAS  Google Scholar 

  • Babaei AA, Baboli Z, Jaafarzadeh N et al (2015) Synthesis, performance, and nonlinear modeling of modified nano-sized magnetite for removal of Cr(VI) from aqueous solutions. Desalin Water Treat 53:768–777

    Article  CAS  Google Scholar 

  • Banerjee M, Basu RK, Das SK (2018) Cu(II) removal using green adsorbents: kinetic modeling and plant scale-up design. Environ Sci Pollut Res:1–15

  • Behnamfard A, Salarirad MM (2009) Equilibrium and kinetic studies on free cyanide adsorption from aqueous solution by activated carbon. J Hazard Mater 170:127–133

    Article  CAS  Google Scholar 

  • Benavente M (2008) Adsorption of metallic ions onto chitosan: equilibrium and kinetic studies. Licentiate thesis, Royal Institute of Technology, Department of Chemical Engineering and Technology, Stockholm, Sweden

  • Bingham E, Cohrssen B, Powell C (2001) Patty's toxicology. Wiley, UK

    Book  Google Scholar 

  • Cheera P, Karlapudi S, Sellola G, Ponneri V (2016) A facile green synthesis of spherical Fe3O4 magnetic nanoparticles and their effect on degradation of methylene blue in aqueous solution. J Mol Liq 221:993–998

    Article  CAS  Google Scholar 

  • Chen Z, Liu T, Tang J, Zheng Z, Wang H, Shao Q, Chen G, Li Z, Chen Y, Zhu J, Feng T (2018) Characteristics and mechanisms of cadmium adsorption from aqueous solution using lotus seedpod-derived biochar at two pyrolytic temperatures. Environ Sci Pollut Res 25:11854–11866

    Article  CAS  Google Scholar 

  • Chorom M, Parnian A, Jaafarzadeh N (2012) Nickel removal by the aquatic plant (Ceratophyllum Demersum L.). Int J Environ Sci Dev 3:4–7

    Google Scholar 

  • Dada A, Olalekan A, Olatunya A, DADA O (2012) Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ onto phosphoric acid modified rice husk. IOSR J Appl Chem 3:38–45

    Article  Google Scholar 

  • Elhafez SEA, Hamad HA, Zaatout AA, Malash GF (2017) Management of agricultural waste for removal of heavy metals from aqueous solution: adsorption behaviors, adsorption mechanisms, environmental protection, and techno-economic analysis. Environ Sci Pollut Res 24:1397–1415

    Article  Google Scholar 

  • El-Naas MH, Alhaija MA, Al-Zuhair S (2017) Evaluation of an activated carbon packed bed for the adsorption of phenols from petroleum refinery wastewater. Environ Sci Pollut Res 24:7511–7520

    Article  CAS  Google Scholar 

  • Energy USD (2010) Analysis and geochemical modeling of vanadium contamination in groundwater new rifle processing site. In: Colorado

    Google Scholar 

  • Essandoh M, Wolgemuth D, Pittman CU, Mohan D, Mlsna T (2017) Adsorption of metribuzin from aqueous solution using magnetic and nonmagnetic sustainable low-cost biochar adsorbents. Environ Sci Pollut Res 24:4577–4590

    Article  CAS  Google Scholar 

  • Fan L, Luo C, Lv Z et al (2011) Preparation of magnetic modified chitosan and adsorption of Zn2+ from aqueous solutions. Colloids Surfaces B 88:574–581

    Article  CAS  Google Scholar 

  • Fujiwara K, Ramesh A, Maki T et al (2007) Adsorption of platinum(IV), palladium(II) and gold(III) from aqueous solutions onto l-lysine modified crosslinked chitosan resin. J Hazard Mater 146:39–50

    Article  CAS  Google Scholar 

  • Gamage A, Shahidi F (2007) Use of chitosan for the removal of metal ion contaminants and proteins from water. Food Chem 104:989–996

    Article  CAS  Google Scholar 

  • Gao X, Wu L, Xu Q, Tian W, Li Z, Kobayashi N (2018) Adsorption kinetics and mechanisms of copper ions on activated carbons derived from pinewood sawdust by fast H3PO4 activation. Environ Sci Pollut Res 25:7907–7915

    Article  CAS  Google Scholar 

  • Ghrab S, Eloussaief M, Lambert S, Bouaziz S, Benzina M (2018) Adsorption of terpenic compounds onto organo-palygorskite. Environ Sci Pollut Res 25:18251–18262

    Article  CAS  Google Scholar 

  • Gil A, Amiri MJ, Abedi-Koupai J, Eslamian S (2018) Adsorption/reduction of Hg(II) and Pb(II) from aqueous solutions by using bone ash/nZVI composite: effects of aging time, Fe loading quantity and co-existing ions. Environ Sci Pollut Res 25:2814–2829

    Article  CAS  Google Scholar 

  • Hakim L, Sabarudin A, Oshita K et al (2008) Synthesis of cross-linked chitosan functionalized with threonine moiety and its application to on-line collection/concentration and determination of Mo, V and Cu. Talanta 74:977–985

    Article  CAS  Google Scholar 

  • Hu J, Chen C, Zhu X, Wang X (2009) Removal of chromium from aqueous solution by using oxidized multiwalled carbon nanotubes. J Hazard Mater 162:1542–1550

    Article  CAS  Google Scholar 

  • Hu Q, Paudyal H, Zhao J et al (2014) Adsorptive recovery of vanadium(V) from chromium(VI)-containing effluent by Zr(IV)-loaded orange juice residue. Chem Eng J 248:79–88

    Article  CAS  Google Scholar 

  • Hydari S, Sharififard H, Nabavinia M, reza PM (2012) A comparative investigation on removal performances of commercial activated carbon, chitosan biosorbent and chitosan/activated carbon composite for cadmium. Chem Eng J 193–194:276–282

    Article  Google Scholar 

  • Jaafarzadeh N, Amiri H, Ahmadi M (2012) Factorial experimental design application in modification of volcanic ash as a natural adsorbent with Fenton process for arsenic removal. Environ Technol 33:159–165

    Article  CAS  Google Scholar 

  • Jonidi Jafari A, Kakavandi B, Jaafarzadeh N et al (2017) Fenton-like catalytic oxidation of tetracycline by AC@Fe3O4 as a heterogeneous persulfate activator: adsorption and degradation studies. J Ind Eng Chem 45:323–333

    Article  CAS  Google Scholar 

  • Kakavandi B, Kalantary RR, Farzadkia M et al (2014) Enhanced chromium (VI) removal using activated carbon modified by zero valent iron and silver bimetallic nanoparticles. J Environ Heal Sci Eng 12:115

    Article  Google Scholar 

  • Khanafari A, Marandi R, Sanatei S (2008) Recovery of chitin and chitosan from shrimp waste by chemical and microbial methods. Iran J Environ Heal Sci Eng 5:19–24

    CAS  Google Scholar 

  • Kokkinos E, Soukakos K, Kostoglou M, Mitrakas M (2018) Cadmium, mercury, and nickel adsorption by tetravalent manganese feroxyhyte: selectivity, kinetic modeling, and thermodynamic study. Environ Sci Pollut Res 25:12263–12273

    Article  CAS  Google Scholar 

  • Kumar ASK, Sharma S, Reddy RS et al (2015) Comprehending the interaction between chitosan and ionic liquid for the adsorption of palladium. Int J Biol Macromol 72:633–639

    Article  CAS  Google Scholar 

  • Kwok KCM, Koong LF, Al Ansari T, McKay G (2018) Adsorption/desorption of arsenite and arsenate on chitosan and nanochitosan. Environ Sci Pollut Res 25:14734–14742

    Article  CAS  Google Scholar 

  • Kyzas GZ, Deliyanni EA (2013) Mercury(II) removal with modified magnetic chitosan adsorbents. Molecules 18:6193–6214

    Article  CAS  Google Scholar 

  • Kyzas GZ, Lazaridis NK, Deliyanni EA (2013a) Oxidation time effect of activated carbons for drug adsorption. Chem Eng J 234:491–499

    Article  CAS  Google Scholar 

  • Kyzas GZ, Lazaridis NK, Kostoglou M (2013b) On the simultaneous adsorption of a reactive dye and hexavalent chromium from aqueous solutions onto grafted chitosan. J Colloid Interface Sci 407:432–441

    Article  CAS  Google Scholar 

  • Kyzas GZ, Lazaridis NK, Kostoglou M (2014a) Adsorption/desorption of a dye by a chitosan derivative: experiments and phenomenological modeling. Chem Eng J 248:327–336

    Article  CAS  Google Scholar 

  • Kyzas GZ, Siafaka PI, Lambropoulou DA, Lazaridis NK, Bikiaris DN (2014b) Poly(itaconic acid)-grafted chitosan adsorbents with different cross-linking for Pb(II) and Cd(II) uptake. Langmuir 30:120–131

    Article  CAS  Google Scholar 

  • Kyzas GZ, Travlou NA, Deliyanni EA (2014c) The role of chitosan as nanofiller of graphite oxide for the removal of toxic mercury ions. Colloids Surfaces B 113:467–476

    Article  CAS  Google Scholar 

  • Kyzas GZ, Siafaka PI, Pavlidou EG, Chrissafis KJ, Bikiaris DN (2015) Synthesis and adsorption application of succinyl-grafted chitosan for the simultaneous removal of zinc and cationic dye from binary hazardous mixtures. Chem Eng J 259:438–448

    Article  CAS  Google Scholar 

  • Liu X, Zhang L (2015) Insight into the adsorption mechanisms of vanadium(V) on a high-efficiency biosorbent (Ti-doped chitosan bead). Int J Biol Macromol 79:110–117

    Article  CAS  Google Scholar 

  • Lu L, Li J, Ng DHL et al (2017) Synthesis of novel hierarchically porous Fe3O4@MgAl–LDH magnetic microspheres and its superb adsorption properties of dye from water. J Ind Eng Chem 46:315–323

    Article  CAS  Google Scholar 

  • Melber C, Keller D, Mangelsdorf I (2002) Palladium: environmental health criteria. World Health Organization, Geneva, p 222

    Google Scholar 

  • Mthombeni NH, Mbakop S, Ochieng A, Onyango MS (2016) Vanadium (V) adsorption isotherms and kinetics using polypyrrole coated magnetized natural zeolite. J Taiwan Inst Chem Eng 66:172–180

    Article  CAS  Google Scholar 

  • Naeem A, Westerhoff P, Mustafa S (2007) Vanadium removal by metal (hydr)oxide adsorbents. Water Res 41:1596–1602

    Article  CAS  Google Scholar 

  • Narayani H, Jose M, Sriram K, Shukla S (2018) Hydrothermal synthesized magnetically separable mesostructured H2Ti3O7/γ-Fe2O3 nanocomposite for organic dye removal via adsorption and its regeneration/reuse through synergistic non-radiation driven H2O2 activation. Environ Sci Pollut Res 25:20304–20319

    Article  CAS  Google Scholar 

  • Nekouei F, Nekouei S, Keshtpour F, Noorizadeh H, Wang S (2017) Cr(OH)3-NPs-CNC hybrid nanocomposite: a sorbent for adsorptive removal of methylene blue and malachite green from solutions. Environ Sci Pollut Res 24:25291–25308

    Article  CAS  Google Scholar 

  • Parham H, Rahbar N (2009) Solid phase extraction-spectrophotometric determination of salicylic acid using magnetic iron oxide nanoparticles as extractor. J Pharm Biomed Anal 50:58–63

    Article  CAS  Google Scholar 

  • Pu S, Ma H, Zinchenko A, Chu W (2017) Novel highly porous magnetic hydrogel beads composed of chitosan and sodium citrate: an effective adsorbent for the removal of heavy metals from aqueous solutions. Environ Sci Pollut Res 24:16520–16530

    Article  CAS  Google Scholar 

  • Pyrzyńska K, Wierzbicki T (2004) Determination of vanadium species in environmental samples. Talanta 64:823–829

    Article  Google Scholar 

  • Rahbar N, Behrouz E, Ramezani Z (2017) One-step synthesis of zirconia and magnetite nanocomposite immobilized chitosan for micro-solid-phase extraction of organophosphorous pesticides from juice and water samples prior to gas chromatography/mass spectroscopy. Food Anal Methods 10:2229–2240

    Article  Google Scholar 

  • Sagheer FAA, Al-Sughayer MA, Muslim S, Elsabee MZ (2009) Extraction and characterization of chitin and chitosan from marine sources in Arabian Gulf. Carbohydr Polym 77:410–419

    Article  Google Scholar 

  • Sari A, Tuzen M (2008) Biosorption of total chromium from aqueous solution by red algae (Ceramium virgatum): equilibrium, kinetic and thermodynamic studies. J Hazard Mater 160:349–355

    Article  CAS  Google Scholar 

  • Sari A, Mendil D, Tuzen M, Soylak M (2009) Biosorption of palladium(II) from aqueous solution by moss (Racomitrium lanuginosum) biomass: equilibrium, kinetic and thermodynamic studies. J Hazard Mater 162:874–879

    Article  CAS  Google Scholar 

  • Sellaoui L, Dotto GL, Lamine AB, Erto A (2017) Interpretation of single and competitive adsorption of cadmium and zinc on activated carbon using monolayer and exclusive extended monolayer models. Environ Sci Pollut Res 24:19902–19908

    Article  CAS  Google Scholar 

  • Shaban M, Hassouna MEM, Nasief FM, AbuKhadra MR (2017) Adsorption properties of kaolinite-based nanocomposites for Fe and Mn pollutants from aqueous solutions and raw ground water: kinetics and equilibrium studies. Environ Sci Pollut Res 24:22954–22966

    Article  CAS  Google Scholar 

  • Sharififard H, Ashtiani FZ, Soleimani M (2012) Adsorption of palladium and platinum from aqueous solutions by chitosan and activated carbon coated with chitosan. Asia Pac J Chem Eng 8:384–395

    Article  Google Scholar 

  • Sharma S, Rajesh N (2017) Expeditious preparation of β-cyclodextrin grafted chitosan using microwave radiation for the enhanced palladium adsorption from aqueous waste and an industrial catalyst. J Environ Chem Eng 5:1927–1935

    Article  CAS  Google Scholar 

  • Shen Z, Zhang Y, McMillan O, Jin F, Al-Tabbaa A (2017) Characteristics and mechanisms of nickel adsorption on biochars produced from wheat straw pellets and rice husk. Environ Sci Pollut Res 24:12809–12819

    Article  CAS  Google Scholar 

  • Tran HV, Tran LD, Nguyen TN (2010) Preparation of chitosan/magnetite composite beads and their application for removal of Pb(II) and Ni(II) from aqueous solution. Mater Sci Eng C 30:304–310

    Article  CAS  Google Scholar 

  • Wanassi B, Hariz IB, Ghimbeu CM, Vaulot C, Hassen MB, Jeguirim M (2017) Carbonaceous adsorbents derived from textile cotton waste for the removal of Alizarin S dye from aqueous effluent: kinetic and equilibrium studies. Environ Sci Pollut Res 24:10041–10055

    Article  CAS  Google Scholar 

  • Wang L, Zhao X, Zhang J, Xiong Z (2017) Selective adsorption of Pb (II) over the zinc-based MOFs in aqueous solution-kinetics, isotherms, and the ion exchange mechanism. Environ Sci Pollut Res 24:14198–14206

    Article  CAS  Google Scholar 

  • Wang M, Wu L, Hu Q, Yang Y (2018) Application of magnetic nanoparticles coated with sodium dodecyl sulfate and modified with 2-(5-bromo-2-pyridylazo)-5-diethyl aminophenol as a novel adsorbent for dispersive-magnetic solid-phase extraction and determination of palladium in soil samples. Environ Sci Pollut Res 25:8340–8349

    Article  CAS  Google Scholar 

  • Wei W, Sha-hua Q, Mei X et al (2002) Preconcentration of vanadium(V) on crosslinked chitosan and determination by graphite furnace atomic absorption spectrometry. Wuhan Univ J Nat Sci 7:222–226

    Article  Google Scholar 

  • Wei D, Li S, Fang L, Zhang Y (2018) Effect of environmental factors on enhanced adsorption and photocatalytic regeneration of molecular imprinted TiO2 polymers for fluoroquinolones. Environ Sci Pollut Res 25:6729–6738

    Article  CAS  Google Scholar 

  • Yamaura M, Costa CH, Gualbertoyamamura AP (2007) Adsorption studies for Cr(VI) onto magnetic particles covered with chitosan. International nuclear Atlantic conference - INAC 2007, Santos, SP, Brazil, September 30 to October 5 2007

  • Yang J, Dong Y, Li J et al (2015) Removal of Co(II) from aqueous solutions by sulfonated magnetic multi-walled carbon nanotubes. Korean J Chem Eng 32:2247–2256

    Article  CAS  Google Scholar 

  • Yuwei C, Jianlong W (2011) Preparation and characterization of magnetic chitosan nanoparticles and its application for Cu(II) removal. Chem Eng J 168:286–292

    Article  Google Scholar 

  • Zhang L, Liu X, Xia W, Zhang W (2014) Preparation and characterization of chitosan-zirconium(IV) composite for adsorption of vanadium(V). Int J Biol Macromol 64:155–161

    Article  CAS  Google Scholar 

  • Zhou L, Liu J, Liu Z (2009) Adsorption of platinum(IV) and palladium(II) from aqueous solution by thiourea-modified chitosan microspheres. J Hazard Mater 172:439–446

    Article  CAS  Google Scholar 

  • Zhou L, Xu J, Liang X, Liu Z (2010) Adsorption of platinum(IV) and palladium(II) from aqueous solution by magnetic cross-linking chitosan nanoparticles modified with ethylenediamine. J Hazard Mater 182:518–524

    Article  CAS  Google Scholar 

Download references

Funding

We are sincerely thankful to the Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences (Project number: ETRC-9434) for the financial and academic supports of the present research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neemat Jaafarzadeh.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Tito Roberto Cadaval Jr

Electronic supplementary material

ESM 1

(DOCX 762 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omidinasab, M., Rahbar, N., Ahmadi, M. et al. Removal of vanadium and palladium ions by adsorption onto magnetic chitosan nanoparticles. Environ Sci Pollut Res 25, 34262–34276 (2018). https://doi.org/10.1007/s11356-018-3137-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-3137-1

Keywords

Navigation