Skip to main content

Advertisement

Log in

Bacterial community structure and diversity responses to the direct revegetation of an artisanal zinc smelting slag after 5 years

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This comparative field study examined the responses of bacterial community structure and diversity to the revegetation of zinc (Zn) smelting waste slag with eight plant species after 5 years. The microbial community structure of waste slag with and without vegetation was evaluated using high-throughput sequencing. The physiochemical properties of Zn smelting slag after revegetation with eight plant rhizospheres for 5 years were improved compared to those of bulk slag. Revegetation significantly increased the microbial community diversity in plant rhizospheres, and at the phylum level, Proteobacteria, Acidobacteria, and Bacteroidetes were notably more abundant in rhizosphere slags than those in bulk waste slag. Additionally, revegetation increased the relative abundance of plant growth-promoting rhizobacteria such as Flavobacterium, Streptomyces, and Arthrobacter as well as symbiotic N2 fixers such as Bradyrhizobium. Three dominant native plant species (Arundo donax, Broussonetia papyrifera, and Robinia pseudoacacia) greatly increased the quality of the rhizosphere slags. Canonical correspondence analysis showed that the differences in bacterial community structure between the bulk and rhizosphere slags were explained by slag properties, i.e., pH, available copper (Cu) and lead (Pb), moisture, available nitrogen (N), phosphorus (P), and potassium (K), and organic matter (OM); however, available Zn and cadmium (Cd) contents were the slag parameters that best explained the differences between the rhizosphere communities of the eight plant species. The results suggested that revegetation plays an important role in enhancing bacterial community abundance and diversity in rhizosphere slags and that revegetation may also regulate microbiological properties and diversity mainly through changes in heavy metal bioavailability and physiochemical slag characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Afzal M, Yousaf S, Reichenauer TG, Sessitsch A (2013) Ecology of alkane-degrading bacteria and their interaction with the plant. In: Bruijn FJD (ed) Molecular microbial ecology of the rhizosphere. John Wiley & Sons, Hoboken, pp 975–989

    Chapter  Google Scholar 

  • Akhtar MS, Siddiqui ZA (2009) Use of plant growth-promoting rhizobacteria for the biocontrol of root-rot disease complex of chickpea. Australas Plant Pathol 38:44–50

    Article  Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  Google Scholar 

  • Asensio V, Covelo EF, Kandeler E (2013) Soil management of copper mine tailing soils—sludge amendment and tree vegetation could improve biological soil quality. Sci Total Environ 456:82–90

    Article  CAS  Google Scholar 

  • Balogh J, Pintér K, Fóti S, Cserhalmi D, Papp M, Nagy Z (2011) Dependence of soil respiration on soil moisture, clay content, soil organic matter, and CO2 uptake in dry grasslands. Soil Biol Biochem 43:1006–1013

    Article  CAS  Google Scholar 

  • Banning NC, Gleeson DB, Grigg AH, Grant CD, Andersen GL, Brodie EL, Murphy DV (2011) Soil microbial community successional patterns during forest ecosystem restoration. Appl Environ Microb 77:6158–6164

    Article  CAS  Google Scholar 

  • Bao SD (2000) Soil agricultural chemistry analysis, 3rd edn. Chinese Agric Press, Beijing

    Google Scholar 

  • Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.) Soil Biol Biochem 37:241–250

    Article  CAS  Google Scholar 

  • Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13

    Article  CAS  Google Scholar 

  • Bouwman LA, Vangronsveld J (2004) Rehabilitation of the nematode fauna in a phytostabilized, heavily zinc-contaminated, sandy soil. J Soils Sediments 4:17–23

    Article  CAS  Google Scholar 

  • Bradshaw A (1997) Restoration of mined lands—using natural processes. Ecol Eng 8:255–269

    Article  Google Scholar 

  • Çakmakçi R, Dönmez F, Aydın A, Şahin F (2006) Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biol Biochem 38:1482–1487

    Article  CAS  Google Scholar 

  • Cébron A, Beguiristain T, Faure P, Norini MP, Masfaraud JF, Leyval C (2009) Influence of vegetation on the in situ bacterial community and polycyclic aromatic hydrocarbon (PAH) degraders in aged PAH-contaminated or thermal-desorption-treated soil. Appl Environ Microbiol 75:6322–6330

    Article  CAS  Google Scholar 

  • Chaignon V, Quesnoit M, Hinsinger P (2009) Copper availability and bioavailability are controlled by rhizosphere pH in rape grown in an acidic Cu-contaminated soil. Environ Pollut 157:3363–3369

    Article  CAS  Google Scholar 

  • Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41

    Article  Google Scholar 

  • Chodak M, Niklinska M (2010) Effect of texture and tree species on microbial properties of mine soils. Appl Soil Ecol 46:268–275

    Article  Google Scholar 

  • Chodak M, Pietrzykowski M, Niklinska M (2009) Development of microbial properties in a chronosequence of sandy mine soils. Appl Soil Ecol 41:259–268

    Article  Google Scholar 

  • Duhan JS, Dudeja SS, Khurana AL (1998) Siderophore production in relation to N2 fixation and iron uptake in pigeon pea-rhizobium symbiosis. Folia Microbiol 43:421–426

    Article  CAS  Google Scholar 

  • Esperschütz J, Buegger F, Winkler JB, Munch JC, Schloter M, Gattinger A (2009) Microbial response to exudates in the rhizosphere of young beech trees (Fagus sylvatica L.) after dormancy. Soil Biol Biochem 41:1976–1985

    Article  CAS  Google Scholar 

  • Feng XB, Li GH, Qiu GL (2004) A preliminary study on mercury contamination to the environment from artisanal zinc smelting using indigenous methods in Hezhang county, Guizhou, China—part 1: mercury emission from zinc smelting and its influences on the surface waters. Atmos Environ 38:6223–6230

    Article  CAS  Google Scholar 

  • Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364

    Article  Google Scholar 

  • Frostegård A, Bååth E (1996) The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fertil Soils 22:59–65

    Article  Google Scholar 

  • Garbeva P, Veen JA, Elsas JD (2004) Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol 42:243–270

    Article  CAS  Google Scholar 

  • Garland JL (1997) Analysis and interpretation of community-level physiological profiles in microbial ecology. FEMS Microbiol Ecol 24:289–300

    Article  CAS  Google Scholar 

  • Gholami A, Shahsavani S, Nezarat S (2009) The effect of plant growth promoting rhizobacteria (PGPR) on germination, seedling growth and yield of maize. Int J Biol Life Sci 1:35–40

    Google Scholar 

  • Giller KE, Witter E, McGrath SP (2009) Heavy metals and soil microbes. Soil Biol Biochem 41:2031–2037

    Article  CAS  Google Scholar 

  • Gil-Sotres F, Trasar-Cepeda C, Leirós MC, Seoane S (2005) Different approaches to evaluating soil quality using biochemical properties. Soil Biol Biochem 37:877–887

    Article  CAS  Google Scholar 

  • Gratão PL, Prasad MNV, Cardoso PF, Lea PJ, Azevedo RA (2005) Phytoremediation: green technology for the clean up of toxic metals in the environment. Braz J Plant Physiol 17:53–64

    Article  Google Scholar 

  • Griffiths RI, Thomson BC, James P, Bell T, Bailey M, Whiteley AS (2011) The bacterial biogeography of British soils. Environ Microbiol 13:1642–1654

    Article  Google Scholar 

  • Hinojosa MB, García-Ruíz R, Viñegla B, Carreira JA (2004) Microbiological rates and enzyme activities as indicators of functionality in soils affected by the Aznalcóllar toxic spill. Soil Biol Biochem 36:1637–1644

    Article  CAS  Google Scholar 

  • Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237:173–195

    Article  CAS  Google Scholar 

  • Honeker LK, Neilson JW, Root RA, Gil-Loaiza J, Chorover J, Maier RM (2017) Bacterial rhizoplane colonization patterns of Buchloe dactyloides growing in metalliferous mine tailings reflect plant status and biogeochemical conditions. Microb Ecol 74:853–867

    Article  CAS  Google Scholar 

  • Hong C, Si YX, Xing Y, Li Y (2015) Illumina MiSeq sequencing investigation on the contrasting soil bacterial community structures in different iron mining areas. Environ Sci Pollut Res 22:10788–10799

    Article  CAS  Google Scholar 

  • Igual J, Valverde A, Cervantes E, Velázquez E (2001) Phosphate-solubilizing bacteria as inoculants for agriculture: use of updated molecular techniques in their study. Agronomie 21:561–568

    Article  Google Scholar 

  • Jason AP, Aymé S, Omry K, Zhao J, Susannah GT, Jeffery LD, Edward SB, Ruth EL (2013) Diversity and heritability of the maize rhizosphere microbiome under field conditions. PNAS 110:6548–6553

    Article  Google Scholar 

  • Johnson JF, Allan DL, Vance CP (1994) Phosphorus stress-induced proteoid roots show altered metabolism in Lupinus albus. Plant Physiol 104:657–665

    Article  CAS  Google Scholar 

  • Jones RT, Robeson MS, Lauber CL, Hamady M, Knight R, Fierer N (2009) A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J 3:442–453

    Article  CAS  Google Scholar 

  • Kabata-Pendias A (1993) Behavioural properties of trace metals in soils. Appl Geochem 8:3–9

    Article  Google Scholar 

  • Klemedtsson L, Svensson BH, Rosswall T (1988) Relationships between soil moisture content and nitrous oxide production during nitrification and denitrification. Biol Fertil Soils 6:106–111

    Google Scholar 

  • Kohler J, Caravaca F, Azcón R, Díaz G, Roldán A (2016) Suitability of the microbial community composition and function in a semiarid mine soil for assessing phytomanagement practices based on mycorrhizal inoculation and amendment addition. J Environ Manag 169:236–246

    Article  CAS  Google Scholar 

  • Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microb 79:5112–5120

    Article  CAS  Google Scholar 

  • Kuffner M, Puschenreiter M, Wieshammer G, Gorfer M, Sessitsch A (2008) Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows. Plant Soil 304:35–44

    Article  CAS  Google Scholar 

  • Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJ (2004) Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant-Microbe Interact 17:6–15

    Article  CAS  Google Scholar 

  • Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75:5111–5120

    Article  CAS  Google Scholar 

  • Li JM, Jin ZX, Gu QP (2011) Effect of plant species on the function and structure of the bacterial community in the rhizosphere of lead–zinc mine tailings in Zhejiang, China. Can J Microbiol 57:569–577

    Article  CAS  Google Scholar 

  • Li XF, Huang LB, Bond PL, Lu Y, Vink S (2014) Bacterial diversity in response to direct revegetation in the Pb–Zn–Cu tailings under subtropical and semi-arid conditions. Ecol Eng 68:233–240

    Article  Google Scholar 

  • Li Y, Jia ZJ, Sun QY, Zhan J, Yang Y, Wang D (2016) Ecological restoration alters microbial communities in mine tailings profiles. Sci Rep 6:25193–25203

    Article  CAS  Google Scholar 

  • Li XY, Sun J, Wang HH, Li X, Wang J, Zhang HW (2017) Changes in the soil microbial phospholipid fatty acid profile with depth in three soil types of paddy fields in China. Geoderma 290:69–74

    Article  CAS  Google Scholar 

  • Lindsay WL, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J 42:421–428

    Article  CAS  Google Scholar 

  • Loreau M (2010) Linking biodiversity and ecosystems: towards a unifying ecological theory. Philos. Trans. R. Soc., B 365:49–60

    Article  Google Scholar 

  • Luo YF, Wu YG, Xing RR, Wang H, Shu J, Wu ZX, Wan ZR (2017) Assessment of chemical, biochemical, and microbiological properties in an artisanal Zn-smelting waste slag site revegetated with four native woody plant species. Appl Soil Ecol. https://doi.org/10.1016/j.apsoil.2017.10.015

  • Mastretta C, Barac T, Vangronsveld J, Newman L, Taghavi S, Lelie DVD (2006) Endophytic bacteria and their potential application to improve the phytoremediation of contaminated environments. Biotechnol Genet Eng Rev 23:175–188

    Article  CAS  Google Scholar 

  • McCaig AE, Grayston SJ, Prosser JI, Glover LA (2001) Impact of cultivation on characterisation of species composition of soil bacterial communities. FEMS Microbiol Ecol 35:37–48

    Article  CAS  Google Scholar 

  • Mendez MO, Maier RM (2008) Phytostabilization of mine tailings in arid and semiarid environments—an emerging remediation technology. Environ Health Perspect 116:278–283

    Article  CAS  Google Scholar 

  • Mertens J, Springael D, De Troyer I, Cheyns K, Wattiau P, Smolders E (2006) Long-term exposure to elevated zinc concentrations induced structural changes and zinc tolerance of the nitrifying community in soil. Environ Microbiol 8:2170–2178

    Article  CAS  Google Scholar 

  • Moche M, Gutknecht J, Schulz E, Langer U, Rinklebe J (2015) Monthly dynamics of microbial community structure and their controlling factors in three floodplain soils. Soil Biol Biochem 90:169–178

    Article  CAS  Google Scholar 

  • Mukerji KG, Manoharachary C, Singh J (eds) (2006) Microbial activity in the rhizosphere. Springer, Berlin

    Google Scholar 

  • Mummey DL, Stahl PD, Buyer JS (2002) Microbial biomarkers as an indicator of ecosystem recovery following surface mine reclamation. Appl Soil Ecol 21:251–259

    Article  Google Scholar 

  • Muyzer G, Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek 73:127–141

    Article  CAS  Google Scholar 

  • Niemeyer JC, Nogueira MA, Carvalho GM, Cohin-De-Pinho SJ, Outeiro US, Rodrigues GG, da Silva EM, Sousa JP (2012) Functional and structural parameters to assess the ecological status of a metal contaminated area in the tropics. Ecotox Environ Safe 86:188–197

    Article  CAS  Google Scholar 

  • Noll M, Wellinger M (2008) Changes of the soil ecosystem along a receding glacier: testing the correlation between environmental factors and bacterial community structure. Soil Biol Biochem 40:2611–2619

    Article  CAS  Google Scholar 

  • Parra A, Zornoza R, Conesa E, Gómez-López MD, Faz A (2016) Evaluation of the suitability of three Mediterranean shrub species for phytostabilization of pyritic mine soils. Catena 136:59–65

    Article  CAS  Google Scholar 

  • Pepper IL, Zerzghi HG, Bengson SA, Iker BC, Banerjee MJ, Brooks JP (2012) Bacterial populations within copper mine tailings: long-term effects of amendment with class A biosolids. J Appl Microbiol 113:569–577

    Article  CAS  Google Scholar 

  • Pfeiffer B, Fender AC, Lasota S, Hertel D, Jungkunst HF, Daniel R (2013) Leaf litter is the main driver for changes in bacterial community structures in the rhizosphere of ash and beech. Appl Soil Ecol 72:150–160

    Article  Google Scholar 

  • Praeg N, Wagner AO, Illmer P (2014) Effects of fertilisation, temperature and water content on microbial properties and methane production and methane oxidation in subalpine soils. Eur J Soil Biol 65:96–106

    Article  CAS  Google Scholar 

  • Rastogi G, Osman S, Vaishampayan PA, Andersen GL, Stetler LD, Sani RK (2010) Microbial diversity in uranium mining-impacted soils as revealed by high-density 16S microarray and clone library. Microb Ecol 59:94–108

    Article  CAS  Google Scholar 

  • Renella G, Ortigoza ALR, Landi L, Nannipieri P (2003) Additive effects of copper and zinc on cadmium toxicity on phosphatase activities and ATP content of soil as estimated by the ecological dose (ED50). Soil Biol Biochem 35:1203–1210

    Article  CAS  Google Scholar 

  • Renella G, Landi L, Ascher J, Ceccherini MT, Pietramellara G, Mench M, Nannipieri P (2008) Long-term effects of aided phytostabilisation of trace elements on microbial biomass and activity, enzyme activities, and composition of microbial community in the Jales contaminated mine spoils. Environ Pollut 152:702–712

    Article  CAS  Google Scholar 

  • Roesch LFW, Fulthorpe RR, Riva A, Casella G, Hadwin AKM, Kent AD, Daroub SH, Camargo FAO, Farmerie WG, Triplett EW (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1:283–290

    Article  CAS  Google Scholar 

  • Rosario K, Iverson SL, Henderson DA, Chartrand S, McKeon C, Glenn EP, Maier RM (2007) Bacterial community changes during plant establishment at the San Pedro River mine tailings site. J Environ Qual 36:1249–1259

    Article  CAS  Google Scholar 

  • Ruttens A, Colpaert JV, Mench M, Boisson J, Carleer R, Vangronsveld J (2006) Phytostabilization of a metal contaminated sandy soil. II: influence of compost and/or inorganic metal immobilizing soil amendments on metal leaching. Environ Pollut 144:533–539

    Article  CAS  Google Scholar 

  • Salt DE, Benhamou N, Leszczyniecka M, Raskin I, Chet I (1999) A possible role for rhizobacteria in water treatment by plant roots. Int J Phytorem 1:67–79

    Article  CAS  Google Scholar 

  • Saravanan VS, Madhaiyan M, Osborne J, Thangaraju M, Sa TM (2008) Ecological occurrence of Gluconacetobacter diazotrophicus and nitrogen-fixing Acetobacteraceae members: their possible role in plant growth promotion. Microb Ecol 55:130–140

    Article  CAS  Google Scholar 

  • Shi SJ, Richardson AE, O'Callaghan M, DeAngelis KM, Jones EE, Stewart A, Firestone MK, Condron LM (2011) Effects of selected root exudate components on soil bacterial communities. FEMS Microbiol Ecol 77:600–610

    Article  CAS  Google Scholar 

  • Singh KP, Mandal TN, Tripathi SK (2001) Patterns of restoration of soil physciochemical properties and microbial biomass in different landslide sites in the sal forest ecosystem of Nepal Himalaya. Ecol Eng 17:385–401

    Article  Google Scholar 

  • Stefanowicz AM, Kapusta P, Szarek-Lukaszewska G, Grodzinska K, Niklinska M, Vogt RD (2012) Soil fertility and plant diversity enhance microbial performance in metal-polluted soils. Sci Total Environ 439:211–219

    Article  CAS  Google Scholar 

  • Touceda-González M, Álvarez-López V, Prieto-Fernández Á, Rodríguez-Garrido B, Trasar-Cepeda C, Mench M, Puschenreiter M, Quintela-Sabarís C, Macías-García F, Kidd PS (2017) Aided phytostabilisation reduces metal toxicity, improves soil fertility and enhances microbial activity in Cu-rich mine tailings. J Environ Manag 186:301–313

    Article  CAS  Google Scholar 

  • Tscherko D, Hammesfahr U, Marx MC, Kandeler E (2004) Shifts in rhizosphere microbial communities and enzyme activity of Poa alpina across an alpine chronosequence. Soil Biol Biochem 36:1685–1698

    Article  CAS  Google Scholar 

  • Van der Putten WH, Vet LEM, Harvey JA, Wäckers FL (2001) Linking above- and belowground multitrophic interactions of plants, herbivores, pathogens, and their antagonists. Trends Ecol Evol 16:547–554

    Article  Google Scholar 

  • Wakelin SA, Anand RR, Reith F, Gregg AL, Noble RRP, Goldfarb KC, Andersen GL, DeSantis TZ, Piceno YM, Brodie EL (2012) Bacterial communities associated with a mineral weathering profile at a sulphidic mine tailings dump in arid Western Australia. FEMS Microbiol Ecol 79:298–311

    Article  CAS  Google Scholar 

  • Wang YP, Shi JY, Wang H, Lin Q, Chen XC, Chen YX (2007) The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Ecotox Environ Safe 67:75–81

    Article  CAS  Google Scholar 

  • Wang YP, Li QB, Shi JY, Lin Q, Chen XC, Wu WX, Chen YX (2008) Assessment of microbial activity and bacterial community composition in the rhizosphere of a copper accumulator and a non-accumulator. Soil Biol Biochem 40:1167–1177

    Article  CAS  Google Scholar 

  • Wang H, Yang JP, Yang SH, Yang ZC, Lv YM (2014) Effect of a 10 °C-elevated temperature under different water contents on the microbial community in a tea orchard soil. Eur J Soil Biol 62:113–120

    Article  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633

    Article  CAS  Google Scholar 

  • Wu HL, Wang XZ, He XJ, Zhang SB, Liang RB, Shen J (2017) Effects of root exudates on denitrifier gene abundance, community structure and activity in a micro-polluted constructed wetland. Sci Total Environ 598:697–703

    Article  CAS  Google Scholar 

  • Xu N, Tan GC, Wang HY, Gai XP (2016) Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure. Eur J Soil Biol 74:1–8

    Article  CAS  Google Scholar 

  • Xuluc-Tolosa FJ, Vester HFM, Ramírez-Marcial N, Castellanos-Albores J, Lawrence JD (2003) Leaf litter decomposition of tree species in three successional phases of tropical dry secondary forest in Campeche, Mexico. For Ecol Manag 174:401–412

    Article  Google Scholar 

  • Yang SX, Liao B, Li JT, Guo T, Shu WS (2010) Acidification, heavy metal mobility and nutrient accumulation in the soil–plant system of a revegetated acid mine wasteland. Chemosphere 80:852–859

    Article  CAS  Google Scholar 

  • Yang SX, Liao B, Yang ZH, Chai LY, Li JT (2016) Revegetation of extremely acid mine soils based on aided phytostabilization: a case study from southern China. Sci Total Environ 562:427–434

    Article  CAS  Google Scholar 

  • Yin B, Crowley D, Sparovek G, De Melo WJ, Borneman J (2000) Bacterial functional redundancy along a soil reclamation gradient. Appl Environ Microb 66:4361–4365

    Article  CAS  Google Scholar 

  • Zhang HB, Duan CQ, Shao QY, Ren WM, Sha T, Cheng LZ, Zhao ZW, Hu B (2004) Genetic and physiological diversity of phylogenetically and geographically distinct groups of Arthrobacter isolated from lead–zinc mine tailings. FEMS Microbiol Ecol 49:333–341

    Article  CAS  Google Scholar 

  • Zhang CB, Huang LA, Luan TG, Jin J, Lan CY (2006) Structure and function of microbial communities during the early stages of revegetation of barren soils in the vicinity of a Pb/Zn smelter. Geoderma 136:555–565

    Article  CAS  Google Scholar 

  • Zhang CB, Huang LN, Shu WS, Qiu JW, Zhang JT, Lan CY (2007a) Structural and functional diversity of a culturable bacterial community during the early stages of revegetation near a Pb/Zn smelter in Guangdong, PR China. Ecol Eng 30:16–26

    Article  Google Scholar 

  • Zhang HB, Yang MX, Shi W, Zheng Y, Sha T, Zhao ZW (2007b) Bacterial diversity in mine tailings compared by cultivation and cultivation-independent methods and their resistance to lead and cadmium. Microb Ecol 54:705–712

    Article  CAS  Google Scholar 

  • Zhang XW, Yang LS, Li YH, Li HR, Wang WY, Ye BX (2012) Impacts of lead/zinc mining and smelting on the environment and human health in China. Environ Monit Assess 184:2261–2273

    Article  CAS  Google Scholar 

  • Zhang XF, Zhao L, Xu SJ, Liu YZ, Liu HY, Cheng GD (2013) Soil moisture effect on bacterial and fungal community in Beilu River (Tibetan plateau) permafrost soils with different vegetation types. J Appl Microbiol 114:1054–1065

    Article  CAS  Google Scholar 

  • Zhu FL, Qu LY, Hong XG, Sun XQ (2011) Isolation and characterization of a phosphate-solubilizing halophilic bacterium Kushneria sp. YCWA18 from Daqiao Saltern on the coast of Yellow Sea of China. J Evid Based Complement Altern 2011:1–6

    Google Scholar 

  • Zornoza R, Acosta JA, Martinez-Martinez S, Faz A, Baath E (2015) Main factors controlling microbial community structure and function after reclamation of a tailing pond with aided phytostabilization. Geoderma 245:1–10

    Article  CAS  Google Scholar 

Download references

Funding

The study was funded by a grant from the National Natural Science Foundation of China (no. 41663009), the United Found of the Guizhou Province Government and the Natural Science Foundation of China (no. U1612442), and the Natural and Science Project of the Education Department of Guizhou Province (no. KY[2016]011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonggui Wu.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Wu, Y., Wang, H. et al. Bacterial community structure and diversity responses to the direct revegetation of an artisanal zinc smelting slag after 5 years. Environ Sci Pollut Res 25, 14773–14788 (2018). https://doi.org/10.1007/s11356-018-1573-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-1573-6

Keywords

Navigation