Skip to main content
Log in

Effects of live Myriophyllum aquaticum and its straw on cadmium accumulation in Nasturtium officinale

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The purpose of this study is to determine whether the allelopathy of living Myriophyllum aquaticum and its straw has the same effects; two pot experiments were conducted to study the effects of intercropping using M. aquaticum and its straw on the growth and cadmium (Cd) accumulation of Nasturtium officinale. Different planting ratios (1:3, 2:2 and 3:1) of N. officinale and M. aquaticum led to an increase in the biomass of both plant species and increased the Cd content in roots and shoots of N. officinale, but led to a reduction in the Cd content in roots and shoots of M. aquaticum. When the intercropping ratio of N. officinale and M. aquaticum was 3:1, the Cd amount in whole plants reached the maximum of 293.96 μg pot−1. Mulching the straw of M. aquaticum roots on the soil surface increased the biomass of N. officinale, but mulching the straw of M. aquaticum stems and leaves led to a decrease. Mulching the straw of roots, stems and leaves of M. aquaticum reduced Cd content and amounts in roots and shoots of N. officinale. Intercropping with M. aquaticum can improve the Cd uptake ability of N. officinale, but mulching M. aquaticum straw can reduce its Cd uptake ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals-Concepts and applications. Chemosphere 91:869–881

    Article  CAS  Google Scholar 

  • Bakht J, Shafi M, Jan MJ, Shah Z (2009) Influence of crop residue management, cropping system and N fertilizer on soil N and C dynamics and sustainable wheat (Triticum aestivum L.) production. Soil Tillage Res 104:233–240

    Article  Google Scholar 

  • Bao SD (2000) Soil agrochemical analysis. China Agriculture Press, Beijing

    Google Scholar 

  • Bertness MD, Callaway RM (1994) Positive interactions in communities. Trends Ecol Evol 9:191–193

    Article  CAS  Google Scholar 

  • Brooker RW (2006) Interactions and environmental change. New Phytol 171:271–284

    Article  Google Scholar 

  • Callaway RM, Brooker RW, Choler P, Kikvidze Z, Lortie CJ, Michalet R, Paolini L, Pugnaire FI, Newingham B, Aschehoug ET, Armas C, Kikodze D, Cook BJ (2002) Positive interactions among alpine plants increase with stress. Nature 417:844–848

    Article  CAS  Google Scholar 

  • Chen LJ, Feng HF, Zhu XM, Liu J, Lin LJ, Liang H, Lan HJ, Liu Q (2014) Effect of Cu and Zn compound pollution on antioxidant enzyme activity of Cu-enrichment plant Myriophyllum aquaticum. Acta Botan Boreali-Occiden Sin 34:2056–2062

    Google Scholar 

  • Crain CM, Bertness MD (2001) Ecosystem engineering across environmental gradients: implications for conservation and management. Bioscience 56:211–218

    Article  Google Scholar 

  • Duman F, Leblebici Z, Aksoy A (2009) Growth and bioaccumulation characteristics of watercress (Nasturtium officinale R. BR.) exposed to cadmium, cobalt and chromium. Chem Speciat Bioavailab 21:257–265

    Article  CAS  Google Scholar 

  • Edmondson J (2006) Flora of China 8: Brassicaceae through Saxifragaceae. Bot J Linn Soc 152:132–132

    Article  Google Scholar 

  • Eriksen J (2006) Gross sulphur mineralisation-immobilisation turnover in soil amended with plant residues. Soil Biol Biochem 37:2216–2224

    Article  Google Scholar 

  • Gounden D, Kisten K, Moodley R, Shaik S, Jonnalagadda SB (2016) Impact of spiked concentrations of Cd, Pb, As and Zn in growth medium on elemental uptake of Nasturtium officinale (watercress). J Environ Sci Health B 51:1–7

    Article  CAS  Google Scholar 

  • Hadas A, Kautsky L, Goek M, Kara EE (2004) Rates of decomposition of plant residues and available nitrogen in soil, related to residue composition through simulation of carbon and nitrogen tumover. Soil Biol Biochem 36:255–266

    Article  CAS  Google Scholar 

  • Jensen LS, Salo T, Palmason F, Breland TA, Henriksen TM, Stenberg B, Pedersen A, Lundström C, Esala M (2005) Influence of biochemical quality on C and N mineralization from a broad variety of plant materials in soil. Plant Soil 273:307–326

    Article  CAS  Google Scholar 

  • Jiang CA, Wu QT, Wu SH, Long XX (2009) Effect of co-cropping Sedum alfredii with different plants on metal uptake. China Environ Sci 29:985–990

    CAS  Google Scholar 

  • Li CJ, Ma W, Zhang FS (2008) Rhizosphere talk and its impacts on plant growth. Plant Nutr Fertil Sci 14:178–183

    CAS  Google Scholar 

  • Li XB, Xie JZ, Li BW, Wang W (2009a) Ecological responses of Brassica Juncea intercropping to cadmium stress. Chin J Appl Ecol 20:1711–1715

    CAS  Google Scholar 

  • Li YB, Liu JG, Cheng XR, Zhang W, Sun YY (2009b) The allelopathic effects of returning cotton stalk to soil on the growth of succeeding cotton. Acta Ecol Sin 29:4942–4948

    CAS  Google Scholar 

  • Lin L, Liao M, Ren Y, Luo L, Zhang X, Yang D, He J (2014) Effects of mulching tolerant plant straw on soil surface on growth and cadmium accumulation of Galinsoga parviflora. PLoS One 9:e114957

    Article  Google Scholar 

  • Lin LJ, Luo L, Liao MA, Zhang X, Yang DY (2015) Cadmium accumulation characteristics of emerged plant Nasturtium officinale R. BR Res Environ Yangtze Basin 24:684–689

    Google Scholar 

  • Ma TZ, Ma YH, Xu LL, Fu HH, Nie JR (2013) Agro-ecological remediation technologies on heavy metal contamination in cropland soils. J Agric Res Environ 30:39–43

    CAS  Google Scholar 

  • Malik RN, Husain SZ, Nazir I (2010) Heavy metal contamination and accumulation in soil and wild plant species from industrial area of Islamabad, Pakistan. Pak J Bot 42:291–301

    CAS  Google Scholar 

  • Mcgrath SP, Zhao FJ, Lombi E (2001) Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant Soil 232:207–214

    Article  CAS  Google Scholar 

  • Milojković J, Pezo L, Stojanović M, Mihajlović M, Lopičić Z, Petrović J, Stanojević M, Kragović M (2016) Selected heavy metal biosorption by compost of Myriophyllum spicatum—a chemometric approach. Ecol Eng 93:112–119

    Article  Google Scholar 

  • Nie FH (2005) New comprehensions of hyperaccumulator. Ecol Environ Sci 14:136–138

    Google Scholar 

  • Padilla FM, Pugnaire FI (2006) The role of nurse plants in the restoration of degraded environments. Front Ecol Environ 4:196–202

    Article  Google Scholar 

  • Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyperaccumulation metals in plants. Water Air Soil Pollut 184:105–126

    Article  CAS  Google Scholar 

  • Pan Y, Zhou LX (2007) Influence of applying organic manures on the chemical form of Cu and Cd in the contaminated soil and on wheat uptake: field micro-plot trials. J Nanjing Agric Univ 30:142–146

    CAS  Google Scholar 

  • Pugnaire FI, Luque MT (2001) Changes in plant interactions along a gradient of environmental stress. Oikos 93:42–49

    Article  Google Scholar 

  • Ramamurthy AS, Memarian R (2012) Phytoremediation of mixed soil contaminants. Water Air Soil Pollut 223:511–518

    Article  CAS  Google Scholar 

  • Rastmanesh F, Moore F, Keshavarzi B (2010) Speciation and phytoavailability of heavy metals in contaminated soils in Sarcheshmeh area, Kerman province, Iran. Bull Environ Contam Toxicol 85:515–519

    Article  CAS  Google Scholar 

  • Sarma H (2011) Metal hyperaccumulation in plants: a review focusing on phytoremediation technology. J Environ Sci Technol 4:118–138

    Article  CAS  Google Scholar 

  • Shan H, Li ST, Liu RL (2009) Availability and the related mechanisms of cadmium in soils as influenced by the application of straw or pig manure. J Nucl AgricSci 23:139–144

    Google Scholar 

  • Sun H, Tan CY, Huang DY, Wan DJ, Liu LK, Yang Y, Yu X (2011) Effects of soil organic matter on the accumulation, availability and chemical speciation of heavy metal. J Nat Sci Hunan Normal Univ 34:82–87

    CAS  Google Scholar 

  • Tang FY, Lin LJ, Liao MA, He J, Yang DY, Zhang X (2015) Effects of applying accumulator straw in soil on growth and cadmium accumulation of Galinsoga parviflora. Acta Agriculturae Boreali-Sinica 30:213–218

    Google Scholar 

  • Tong YP, Kneer R, Zhu YG (2004) Vacuolar compartmentalization: a second-generation approach to engineering plants for phytoremediation. Trends Plant Sci 9:7–9

    Article  CAS  Google Scholar 

  • Van Aken B (2009) Transgenic plants for enhanced phytoremediation of toxic explosives. Curr Opin Biotechnol 20:231–236

    Article  Google Scholar 

  • Wang F, Wang W (2008) Review of development and utilization of straw resources in China. Resour Dev Market 24:1009–1012

    Google Scholar 

  • Wenzel WW (2009) Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil 321:385–408

    Article  CAS  Google Scholar 

  • Whiting SN, Leake JR, Mcgrath SP, Baker AJ (2001) Hyperaccumulation of Zn by Thlaspi caerulescens can ameliorate Zn toxicity in the rhizosphere of cocropssped Thlaspi arvense. Environ Sci Technol 35:3237–3241

    Article  CAS  Google Scholar 

  • Xiang YC, Guan CY, Huang H, Peng XH (2010) Effects of intercropping on accumulation of Cd and Pb in oilseed rape. J Soil Water Conserv 24:50–55

    Google Scholar 

  • Xue LL, Shakeel AA, Liu XJ, Zou CM, Hu XD, Zhang YL, Wang LC (2011) Effect of straw mulch conservative cultivation on growth, yield and soil nutrients of rapeseed (Brassica compestris). J Agric Mechanization Res 33:110–115

    Google Scholar 

  • Yabanli M, Yozukmaz A, Sel F (2014) Heavy metal accumulation in the leaves, stem and root of the invasive submerged macrophyte Myriophyllum spicatum L. (Haloragaceae): an example of Kadin Creek (Mugla, Turkey). Braz Arch Biol Technol 57:434–440

    Article  CAS  Google Scholar 

  • Zhang XF, Xia HP, Li ZA, Zhuang P, Gao B (2011) Identification of a new potential Cd-hyperaccumulator Solanum photeinocarpum by soil seed bank-metal concentration gradient method. J Hazard Mater 189:414–419

    Article  CAS  Google Scholar 

  • Zhao MM, Jiang M, Zhou ZW (2011) The components analysis of several kinds of agricultural residues. Mater Rev (B) 25:122–125

    CAS  Google Scholar 

  • Zhu JW, Zou DS, Xiang YC, Wang H, Tan WW (2012) Effects of straw addition on physiological parameters and uptake of heavy metals in Ricinus communis under the stress of Pb/Zn mine tailing. J Hunan Agric Univ (Nat Sci) 38:325–329

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming’an Liao.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, K., Lin, L., Chen, F. et al. Effects of live Myriophyllum aquaticum and its straw on cadmium accumulation in Nasturtium officinale . Environ Sci Pollut Res 24, 22503–22509 (2017). https://doi.org/10.1007/s11356-017-9928-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9928-y

Keywords

Navigation