Skip to main content
Log in

Slow-release formulations of the herbicide picloram by using Fe–Al pillared montmorillonite

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Slow-release formulations of the herbicide picloram (PCM, 4-amino-3,5,6-trichloropyridine-2-carboxylic acid) were designed based on its adsorption on pillared clays (pillared clays (PILCs)) for reducing the water-polluting risk derived from its use in conventional formulations. Fe–Al PILCs were synthesized by the reaction of Na+-montmorillonite (SWy-2) with base-hydrolyzed solutions of Fe and Al. The Fe/(Fe + Al) ratios used were 0.15 and 0.50. The PCM adsorption isotherms on Fe–Al PILCs were well fitted to Langmuir and Freundlich models. The PCM adsorption capacity depended on the Fe content in the PILCs. Slow-release formulations were prepared by enhanced adsorption of the herbicide from PCM-cyclodextrin (CD) complexes in solution. CDs were able to enhance up to 2.5-fold the solubility of PCM by the formation of inclusion complexes where the ring moiety of the herbicide was partially trapped within the CD cavity. Competitive adsorption of anions such as sulfate, phosphate, and chloride as well as the FTIR analysis of PCM-PILC complexes provided evidence of formation of inner sphere complexes of PCM-CD on Fe–Al PILCs. Release of the herbicide in a sandy soil was lower from Fe–Al PILC formulations relative to a PCM commercial formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akelah A (1996) Novel utilizations of conventional agrochemicals by controlled release formulations. Mater Sci Eng C 4:83–98

    Article  Google Scholar 

  • Ali I, Asim M, Khan TA (2012) Low cost adsorbents for the removal of organic pollutants from wastewater. J Environ Manag 113:170–183

    Article  CAS  Google Scholar 

  • Alromeed AA, Scrano L, Bufo SA, Undabeytia T (2015) Slow-release formulations of the herbicide MCPA by using clay-protein composites. Pest Manag Sci 71:1303–1310

    Article  CAS  Google Scholar 

  • Biggar JW, Mingelgrin U, Cheung MW (1978) Equilibrium and kinetics of adsorption of picloram and parathion with soils. J. Agr. Food Chem. 26:1306–1312

    Article  CAS  Google Scholar 

  • Campos EVR, de Oliveira JL, Fraceto LF, Singh B (2014) Polysaccharides as safer release systems for agrochemicals. Agron Sustain Dev 35:47–66

    Article  Google Scholar 

  • Carrizosa MJ, Calderón MJ, Hermosín MC, Cornejo J (2000) Organosmectites as sorbent and carrier of the herbicide bentazone. Sci Total Environ 247:285–293

    Article  CAS  Google Scholar 

  • Celis R, Hermosin MC, Cornejo L, Carrizosa MJ, Cornejo J (2002) Clay-herbicide complexes to retard picloram leaching in soil. Int J Environ An Ch 82:503–517

    Article  CAS  Google Scholar 

  • Cheung MW, Biggar JW (1974) Solubility and molecular-structure of 4-amino-3,5,6-trichloropicolinic acid in relation to pH and temperature. J. Agr. Food Chem. 22:202–206

    Article  CAS  Google Scholar 

  • Delcour I, Spanoghe P, Uyttendaele M (2015) Literature review: impact of climate change on pesticide use. Food Res Int 68:7–15

    Article  Google Scholar 

  • Eggleston CM, Hug S, Stumm W, Sulzberger B, dos Santos AM (1998) Surface complexation of sulfate by hematite surfaces: FTIR and STM observations. Geochim. Cosmochim. Ac. 62:585–593

    Article  CAS  Google Scholar 

  • Entry JA, Sojka RE (2008) Matrix based fertilizers reduce nitrogen and phosphorus leaching in three soils. J Environ Manag 87:364–372

    Article  CAS  Google Scholar 

  • Essington ME (2004) Soil and water chemistry, an integrative approach. CRC Press, Boca Raton

    Google Scholar 

  • FAO FaAOotUN (2007): Specifications and evaluations for agricultural pesticides, Picloram. http://www.fao.org

  • Galán-Jiménez MC, Mishael YG, Nir S, Morillo E, Undabeytia T (2013) Factors affecting the design of slow release formulations of herbicides based on clay-surfactant systems. A Methodological Approach PLoS ONE 8:e59060

    Article  Google Scholar 

  • Gupta VK, Suhas (2009) Application of low-cost adsorbents for dye removal—a review. J Environ Manag 90:2313–2342

  • Hall KE, Ray C, Ki SJ, Spokas KA, Koskinen WC (2015) Pesticide sorption and leaching potential on three Hawaiian soils. J Environ Manag 159:227–234

    Article  CAS  Google Scholar 

  • Haynes D, Müller J, Carter S (2000) Pesticide and herbicide residues in sediments and seagrasses from the Great Barrier Reef World Heritage Area and Queensland Coast. Mar Pollut Bull 41:279–287

    Article  CAS  Google Scholar 

  • He LM, Zelazny LW, Baligar VC, Ritchey KD, Martens DC (1997) Ionic strength effects on sulfate and phosphate adsorption on γ-alumina and kaolinite: triple-layer model. Soil Sci Soc Am J 61:784–793

    Article  CAS  Google Scholar 

  • Higuchi T, Connors K (1965) Phase solubility techniques. In: Reilly CN (ed) Advances in analytical chemistry instrumentation. Interscience, New York, NY, pp 117–212

    Google Scholar 

  • Jozefaciuk G, Muranyi A, Fenyvesi E (2001) Effect of cyclodextrins on surface and pore properties of soil clay minerals. Environ. Sci. Technol. 35:4947–4952

    Article  CAS  Google Scholar 

  • Kashyap PL, Xiang X, Heiden P (2015) Chitosan nanoparticle based delivery systems for sustainable agriculture. Int J Biol Macromol 77:36–51

    Article  CAS  Google Scholar 

  • Kenawy ER, Sherrington DC, Akelah A (1992) Controlled release of agrochemical molecules chemically bound to polymers. Eur Polym J 28:841–862

    Article  CAS  Google Scholar 

  • Kooner ZS, Jardine PM, Feldman S (1995) Competitive surface complexation reactions of sulfate and natural organic carbon on soil. J Environ Qual 24:656–662

    Article  CAS  Google Scholar 

  • Lagaly G (2001) Pesticide-clay interactions and formulations. Appl Clay Sci 18:205–209

    Article  CAS  Google Scholar 

  • Loewy M, Kirs V, Carvajal G, Venturino A, Pechen De D’Angelo AM (1999) Groundwater contamination by azinphos methyl in the Northern Patagonic Region (Argentina). Sci Total Environ 225:211–218

    Article  CAS  Google Scholar 

  • Loring JS, Karlsson M, Fawcett WR, Casey WH (2000) Attenuated total reflection-Fourier-transform infrared and 27 Al-nuclear magnetic resonance investigation of speciation and complexation in aqueous AI(III)-picolinate solutions. Geochim Cosmochim Ac 64:4115–4129

    Article  CAS  Google Scholar 

  • Maqueda C, Villaverde J, Sopeña F, Undabeytia T, Morillo E (2008) Novel system for reducing leaching of the herbicide metribuzin using clay-gel-based formulations. J. Agr. Food Chem. 56:11941–11946

    Article  CAS  Google Scholar 

  • Maqueda C, Villaverde J, Sopeña F, Undabeytia T, Morillo E (2009) Effects of soil characteristics on metribuzin dissipation using clay-gel-based formulations. J. Agr. Food Chem. 57:3273–3278

    Article  CAS  Google Scholar 

  • Marco-Brown JL, Barbosa-Lema CM, Torres Sánchez RM, Mercader RC, dos Santos AM (2012) Adsorption of picloram herbicide on iron oxide pillared montmorillonite. Appl Clay Sci 58:25–33

    Article  CAS  Google Scholar 

  • Marco-Brown JL, Areco MM, Torres Sánchez RM, dos Santos AM (2014) Adsorption of picloram herbicide on montmorillonite: kinetic and equilibrium studies. Colloid Surface A 449:121–128

    Article  CAS  Google Scholar 

  • Marco-Brown JL, Trinelli MA, Gaigneaux EM, Torres Sánchez RM, Dos Santos AM (2015) New insights on the structure of the picloram-montmorillonite surface complexes. J Colloid Interf Sci 444:115–122

    Article  CAS  Google Scholar 

  • Mishra T, Mohapatra P, Parida KM (2008) Synthesis, characterisation and catalytic evaluation of iron-manganese mixed oxide pillared clay for VOC decomposition reaction. Appl Catal, B 79:279–285

    Article  CAS  Google Scholar 

  • Morillo E, Sánchez-Trujillo MA, Villaverde J, Madrid F, Undabeytia T (2014) Effect of contact time and the use of hydroxypropyl-β-cyclodextrin in the removal of fluorene and fluoranthene from contaminated soils. Sci Total Environ 496:144–154

    Article  CAS  Google Scholar 

  • Nir S, Undabeytia T, Yaron-Marcovich D, El-Nahhal Y, Polubesova T, Serban C, Rytwo G, Lagaly G, Rubin B (2000) Optimization of adsorption of hydrophobic herbicides on montmorillonite preadsorbed by monovalent organic cations: interaction between phenyl rings. Environ Sci Technol 34:1269–1274

    Article  CAS  Google Scholar 

  • Osteryoung J, Whittaker JW (1980) Picloram—solubility and acid-base equilibria determined by normal pulse polarography. J. Agr. Food Chem. 28:95–97

    Article  CAS  Google Scholar 

  • Palma G, Sanchez A, Olave Y, Encina F, Palma R, Barra R (2004) Pesticide levels in surface waters in an agricultural-forestry basin in Southern Chile. Chemosphere 57:763–770

    Article  CAS  Google Scholar 

  • Pérez-Martínez JI, Ginés JM, Morillo E, Moyano JR (2000) 1H-nuclear magnetic resonance and phase solubility studies of the stoichiometries in 2,4-D: α-and β-cyclodextrins inclusion complexes. J Inclusion Phenom 37:171–178

    Article  Google Scholar 

  • Qi Y, Donahoe RJ (2008) The environmental fate of arsenic in surface soil contaminated by historical herbicide application. Sci Total Environ 405:246–254

    Article  CAS  Google Scholar 

  • Sánchez-Jiménez N, Sevilla MT, Cuevas J, Rodríguez M, Procopio JR (2012) Interaction of organic contaminants with natural clay type geosorbents: potential use as geologic barrier in urban landfill. J Environ Manag 95:Supplement:S182–Supplement:S187

    Article  Google Scholar 

  • Sarbak Z (1994) Structural and surface properties of anion-activated clay. Mater Chem Phys 39:91–97

    Article  CAS  Google Scholar 

  • Schipper PNM, Vissers MJM, van der Linden AMA (2008): Pesticides in groundwater and drinking water wells: overview of the situation in the Netherlands, Water Science and Technology, pp. 1277–1286

  • Szejtli J (1998) Introduction and general overview of cyclodextrin chemistry. Chem Rev 98:1743–1753

    Article  CAS  Google Scholar 

  • Undabeytia T, Sopeña F, Sánchez-Verdejo T, Villaverde J, Nir S, Morillo E, Maqueda C (2010) Performance of slow-release formulations of alachlor. Soil Sci Soc Am J 74:898–905

    Article  CAS  Google Scholar 

  • Undabeytia T, Recio E, Maqueda C, Morillo E, Gómez-Pantoja E, Sánchez-Verdejo T (2011) Reduced metribuzin pollution with phosphatidylcholine-clay formulations. Pest Manag Sci 67:271–278

    Article  CAS  Google Scholar 

  • Undabeytia T, Recio E, Maqueda C, Sánchez-Verdejo T, Balek V (2012) Slow diuron release formulations based on clay-phosphatidylcholine complexes. Appl Clay Sci 55:53–61

    Article  CAS  Google Scholar 

  • Undabeytia T, Galán-Jiménez MC, Gómez-Pantoja E, Vázquez J, Casal B, Bergaya F, Morillo E (2013) Fe-pillared clay mineral-based formulations of imazaquin for reduced leaching in soil. Appl Clay Sci 80-81:382–389

    Article  CAS  Google Scholar 

  • Wang Y, Gao Z, Shen F, Li Y, Zhang S, Ren X, Hu S (2015) Physicochemical characteristics and slow release performances of chlorpyrifos encapsulated by poly(butyl acrylate- co -styrene) with the cross-linker ethylene glycol dimethacrylate. J Agr Food Chem 63:5196–5204

    Article  CAS  Google Scholar 

  • Wenz G, Han BH, Müller A (2006) Cyclodextrin rotaxanes and polyrotaxanes. Chem Rev 106:782–817

    Article  CAS  Google Scholar 

  • Yan H, Chen X, Feng Y, Xiang F, Li J, Shi Z, Wang X, Lin Q (2015) Modification of montmorillonite by ball-milling method for immobilization and delivery of acetamiprid based on alginate/exfoliated montmorillonite nanocomposite. Polym Bull 73:1185–1206

    Article  Google Scholar 

  • Yáñez C, Cañete-Rosales P, Castillo JP, Catalán N, Undabeytia T, Morillo E (2012) Cyclodextrin inclusion complex to improve physicochemical properties of herbicide bentazon: exploring better formulations. PLoS One 7:e41072

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Universidad de Buenos Aires, Secretaria de Ciencia y Técnica Projects, Ministerio de Ciencia y Técnica, Agencia Nacional de Promoción Científica y Tecnológica, MINCyT-ANPCyT-FONCyT, and Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET) for financial support. J.L.M-B acknowledges CONICET fellowship. This research was also supported by the MEC Project CTM2013-42306-R and the Junta de Andalucía Project P12-RNM1897. Both projects received funding by the European Social Fund. The authors also acknowledge the Analytical Services of Seville University (CITIUS) for SEM-EDS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose L. Marco-Brown.

Additional information

Responsible editor: Guilherme L. Dotto

Electronic supplementary material

ESM 1

(PDF 976 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marco-Brown, J.L., Undabeytia, T., Torres Sánchez, R.M. et al. Slow-release formulations of the herbicide picloram by using Fe–Al pillared montmorillonite. Environ Sci Pollut Res 24, 10410–10420 (2017). https://doi.org/10.1007/s11356-017-8699-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8699-9

Keywords

Navigation