Skip to main content

Advertisement

Log in

Commuter exposure to black carbon particles on diesel buses, on bicycles and on foot: a case study in a Brazilian city

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Commuting in urban environments accounts for a large fraction of the daily dose of inhaled air pollutants, especially in countries where vehicles have old technologies or run on dirty fuels. We measured black carbon (BC) concentrations during bus, walk and bicycle commutes in a Brazilian city and found a large spatial variability across the surveyed area, with median values between 2.5 and 12.0 μg m−3. Traffic volume on roadways (especially the number of heavy-duty diesel vehicles), self-pollution from the bus tailpipe, number of stops along the route and displacement speed were the main drivers of air pollution on the buses. BC concentrations increased abruptly at or close to traffic signals and bus stops, causing in-cabin peaks as large as 60.0 μg m−3. BC hotspots for the walk mode coincided with the locations of bus stops and traffic signals, whilst measurements along a cycle lane located 12 m from the kerb were less affected. The median BC concentrations of the two active modes were significantly lower than the concentrations inside the bus, with a bus/walk and bus/bicycle ratios of up to 6. However, the greater inhalation rates of cyclist and pedestrians yielded larger doses (2.6 and 3.5 μg on a 1.5-km commute), suggesting that the greater physical effort during the active commute may outweigh the reduction in exposure due to the shift from passive to active transport modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adams HS, Nieuwenhuijsen MJ, Colvile RN, McMulle MA, Khandelwal P (2001) Fine particle (PM2.5) personal exposure levels in transport microenvironments, London, UK. Sci Total Environ 279:29–44

    Article  CAS  Google Scholar 

  • Alm S, Jantunen MJ, Vartiainen M (1999) Urban commuter exposure to particle matter and carbon monoxide inside an automobile. J Expo Anal Environ Epidemiol 9(3):237–244

    Article  CAS  Google Scholar 

  • Betancourt RM, Galvis B, Balachandran S, Ramos-Bonilla JP, Sarmiento OL, Gallo-Murcia SM, Contreras Y (2017) Exposure to fine particulate, black carbon, and particle number concentration in transportation microenvironments. Atmos Environ 157:135–145

    Article  Google Scholar 

  • Bigazzi AY, Figliozzi MA (2014) Review of urban bicyclists' intake and uptake of traffic-related air pollution. Transp Rev 34:221–245

    Article  Google Scholar 

  • Böcker L, Dijst M, Faber J (2016) Weather, transport mode choices and emotional travel experiences. Transp Res A 94:360–373

    Google Scholar 

  • Bond TC, Doherty SJ, Fahey DW, Forster PM, Berntsen T, DeAngelo BJ, Flanner MG, Ghan S, Kärcher B, Koch D, Kinne S, Kondo Y, Quinn PK, Sarofim MC, Schultz MG, Schulz M, Venkataraman C, Zhang H, Zhang S, Bellouin N, Guttikunda SK, Hopke PK, Jacobson MZ, Kaiser JW, Klimont Z, Lohmann U, Schwarz JP, Shindell D, Storelvmo T, Warren SG, Zender CS (2013) Bounding the role of black carbon in the climate system: a bounding the role of black carbon in the climate system: a scientific assessment. J Geophys Res 118:5380–5552

    CAS  Google Scholar 

  • Buehler R (2011) Determinants of transport mode choice: a comparison of Germany and the USA. J Transp Geogr 19:644–657

    Article  Google Scholar 

  • Bullard RD, Wright BH (1993) Environmental justice for all: community perspectives on health and research needs. Toxicol Ind Health 9:821–841

    Article  CAS  Google Scholar 

  • Brantley HL, Hagler GSW, Kimbrough ES, Williams RW, Mukerjee S, Neas LM (2015) Mobile air monitoring data-processing strategies and effects on spatial air pollution trends. Atmos Meas Tech 7:2169–2183

    Article  Google Scholar 

  • CAF Observatorio de Movilidad Urbana para América Latina (2009) Información para mejores políticas y mejores ciudades. http://scioteca.caf.com/handle/123456789/422. Accessed 25 July 2017

  • Carvalho AM (2017) Monitoramento da exposição pessoal ao poluente atmosférico black carbon. Dissertation (in Portuguese), Universidade Tecnológica Federal do Paraná

  • Cepeda M, Schoufour J, Freak-Poli R, Koolhaas CM, Dhana K, Bramer WM, Franco OH (2017) Levels of ambient air pollution according to mode of transport: a systematic review. Lancet. https://doi.org/10.1016/S2468-2667(16)30021-4

  • Creemers L, Wets G, Cools M (2015) Meteorological variation in daily travel behaviour: evidence from revealed preference data from the Netherlands. Theoret Appl Climatol 120:183–194

    Article  Google Scholar 

  • de Nazelle A, Fruin S, Westerdahl D, Martinez D, Ripoll A, Kubesch N, Nieuwenhuijsen M (2012) A travel mode comparison of commuters’ exposures to air pollutants in Barcelona. Atmos Environ 59:151–159

    Article  Google Scholar 

  • de Nazelle A, Bode O, Orjuela JP (2016) Comparison of air pollution exposures in active vs. passive travel modes in European cities: a quantitative review. Environ Int. https://doi.org/10.1016/j.envint.2016.12.023

  • Dons E, Panis LI, van Poppel M, Wets G (2012) Personal exposure to black carbon in transport microenvironments. Atmos Environ 55:392–398

    Article  CAS  Google Scholar 

  • EPA: Exposure factors handbook (2011) http://www.epa.gov/ncea/efh. Accessed 25 July 2017

  • Fleischman R, Amiel R, Czerwinski J, Mayer A, Tartakovsky L (2017) Buses retrofitting with diesel particle filters: real-world fuel. J Environ Sci. https://doi.org/10.1016/j.jes.2017.09.011

  • Fondelli MC, Chellini E, Yli-Tuomi T, Cenni I, Gasparrini A, Nava S, Garcia-Orellana I, Lupi A, Grechi D, Mallone S, Jantunen M (2008) Fine particle concentrations in buses and taxis in Florence, Italy. Atmos Environ 42:8185–8193

    Article  CAS  Google Scholar 

  • Gómez-Perales JE, Colvile RN, Nieuwenhuijsen MJ, Fernández-Bremauntz A, Gutiérrez-Avedoy VJ, Páramo-Figueroa VH et al (2004) Commuters’exposure to PM2.5, CO, and benzene in public transport in the metropolitan area of Mexico City. Atmos Environ 38:1219–1229

    Article  Google Scholar 

  • Grahame TJ, Klemm R, Schlesinger RB (2014) Public health and components of particulate matter: the changing assessment of black carbon. J Air Waste Manag Assoc 64:620–660

    Article  CAS  Google Scholar 

  • Hagler GSW, Yelverton TLB, Vedantham R, Hansen ADA, Turner JR (2011) Post-processing method to reduce noise while preserving high time resolution in aethalometer real-time black carbon data. Aerosol Air Qual Res 11:539–546

    CAS  Google Scholar 

  • Hoek G, Krishnan RM, Beelen R, Peters A, Ostro B, Brunekreef B, Kaufman JD (2013) Long-term air pollution exposure and cardio-respiratory mortality: a review. Environ Health. https://doi.org/10.1186/1476-069X-12-43

  • Hansen AD, Rosen H, Novakov T (1984) The Aethalometer—an instrument for the real time measurements of optical absorption by aerosol particles. Sci Total Environ 36:191–196

    Article  CAS  Google Scholar 

  • Janssen NAH, Hoek G, Simic-Lawson M, Fischer P, van Bree L, ten Brink H, Keuken M, Atkinson RW, Anderson HR, Brunekreef B, Cassee FR (2011) Black carbon as an additional indicator of the adverse health effects of airborne particle compared with PM10 and PM2.5. Environ Health Persp 119:1691–1699

    Article  CAS  Google Scholar 

  • Johnston MV, Klems JP, Zordan CA, Pennington MR, Smith JN (2013) Selective detection and characterization of nanoparticles from motor vehicles. Research report. Health Effects Institute

  • Kendrick C, Moore A, Haire A, Bigazzi A, Figliozzi MA, Monsere C, George L (2011) Impact of bicycle lane characteristics on exposure of bicyclists to traffic-related particulate matter. Transp Res Theatr Rec 2247:24–32

    Article  Google Scholar 

  • Klepeis NE, Nelson WC, Ott WR, Robinson JP, Tsang AM, Switzer P, Behar JV, Hern SC, Engelmann WH (2001) The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. J Expo Anal Env Epid 11:231–252

    Article  CAS  Google Scholar 

  • Krecl P, Johansson C, Ström J, Lövenheim B, Gallet J-C (2014) A feasibility study of mapping light-absorbing carbon using a taxi fleet as a mobile platform. Tellus B. https://doi.org/10.3402/tellusb.v66.23533

  • Krecl P, Targino AC, Wiese L, Ketzel M, Correa MP (2016) Screening of short-lived climate pollutants in a street canyon in a mid-sized city in Brazil. Atmos Poll Res 7:1022–1036

    Article  Google Scholar 

  • Li B, Lei XN, Xiu GL, Gao CY, Gao S, Qian NS (2015) Personal exposure to black carbon during commuting in peak and off-peak hours in Shanghai. Sci Total Environ 524:237–245

    Article  Google Scholar 

  • Lim S, Dirks KN, Salmond JA, Xie S (2015) Determinants of spikes in ultrafine particle concentrations whilst commuting by bus. Atmos Environ 112:1–8

    Article  CAS  Google Scholar 

  • Lamarque JF, Bond TC, Eyring V, Granier C, Heil A, Klimont Z, Lee D, Liousse C, Mieville A, Owen B, Schultz MG, Shindell D, Smith SJ, Stehfest E, Van Aardenne J, Cooper OR, Kainuma M, Mahowald N, McConnell JR, Naik V, Riahi K, Van Vuuren DP (2010) Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos Chem Phys 10:7017–7039

    Article  CAS  Google Scholar 

  • MacDougall D, Crummett WB (1980) Guidelines for data acquisition and data quality evaluation in environmental chemistry. Anal Chem 52:2242–2249

    Article  CAS  Google Scholar 

  • Panis LI, de Geus B, Vandenbulcke G, Willems H, Degraeuwe B, Bleux N, Mishra V, Thomas I, Meeusen R (2010) Exposure to particulate matter in traffic: a comparison of cyclists and car passengers. Atmos Environ 44:2263–2270

    Article  Google Scholar 

  • Moreno T, Reche C, Rivas I, Minguillón MC, Martins V, Vargas C, Buonanno G, Parga J, Pandolfi M, Brines M, Ealo M, Fonseca AS, Amato F, Sosa G, Capdevila M, de Miguel E, Querol X, Gibbons W (2015) Urban air quality comparison for bus, tram, subway and pedestrian commutes in Barcelona. Environ Res 142:495–510

    Article  CAS  Google Scholar 

  • Okokon EO, Yli-Tuomi T, Turunen AW, Taimisto P, Pennanen A, Vouitsis I, Samaras Z, Voogt M, Keuken M, Lanki T (2017) Particulates and noise exposure during bicycle, bus and car commuting: a study in three European cities. Environ Res 154:181–189

    Article  CAS  Google Scholar 

  • Peters J, Van den Bossche J, Reggente M, Van Poppel M, De Baets B, Theunis J (2014) Cyclist exposure to UFP and BC on urban routes in Antwerp, Belgium. Atmos Environ 92:31–43

    Article  CAS  Google Scholar 

  • Rivas I, Kumar P, Hagen-Zanker A (2017) Exposure to air pollutants during commuting in London: are there inequalities among different socio-economic groups? Environ Int 101:143–157

    Article  CAS  Google Scholar 

  • Suárez L, Mesias S, Iglesias V, Silva C, Caceres DD, Ruiz-Rudolph P (2014) Personal exposure to particulate matter in commuters using different transport modes (bus, bicycle, car and subway) in an assigned route in downtown Santiago, Chile. Environ Sci Process Impacts 16:1309–1317

    Article  Google Scholar 

  • Targino AC, Gibson MD, Krecl P, Rodrigues MVC, Santos MM, Corrêa MP (2016) Hotspots of black carbon and PM2.5 in an urban area and relationships to traffic characteristics. Environ Poll 218:475–486

    Article  CAS  Google Scholar 

  • Targino AC, Krecl P (2016) Local and regional contributions to black carbon aerosols in a mid-sized city in southern Brazil. Aerosol Air Qual Res 16:125–137

    Article  Google Scholar 

  • Targino AC, Machado BLF, Krecl P (2017) Concentrations and personal exposure to black carbon particles at airports and on commercial flights. Transp Res D 52:128–138

    Article  Google Scholar 

  • Tainio M, de Nazelle AJ, Gotschi T, Kahlmeier S, Rojas-Rueda D, Nieuwenhuijsen MJ, Sá TH, Kelly P, Woodcock J (2016) Can air pollution negate the health benefits of cycling and walking? Prev Med 87:233–236

    Article  Google Scholar 

  • Van den Bossche J, Theunis J, Elen B, Peters J, Botteldooren D, De Baets B (2016) Opportunistic mobile air pollution monitoring: a case study with city wardens in Antwerp. Atmos Environ 141:408–421

    Article  Google Scholar 

  • Vasconcellos EA (2013) Urban transport, environment, and equity. The case for developing countries. Earthscan, New York

    Google Scholar 

  • Vouitsis I, Taimisto P, Kelessis A, Samaras Z (2014) Microenvironment particle measurements in Thessaloniki, Greece. Urban Climate 10:608–620

    Article  Google Scholar 

  • Wang Y, Zhu Y, Salinas R, Ramirez D, Karnae S, John K (2008) Roadside measurements of ultrafine particles at a busy urban intersection. J Air Waste Manag Assoc 58:1449–1457

    Article  CAS  Google Scholar 

  • Williams RD, Knibbs LD (2016) Daily personal exposure to black carbon: a pilot study. Atmos Environ 132:296–299

    Article  CAS  Google Scholar 

  • WHO (2013) Global status report on road safety

  • Yang F, Kaul D, Wong KC, Westerdahl D, Sun L, Ho KF, Tian L, Brimblecombe P, Ning Z (2015) Heterogeneity of passenger exposure to air pollutants in public transport microenvironment. Atmos Environ 109:42–51

  • Zhang Q, Zhu Y (2010) Measurements of ultrafine particle and other vehicular pollutants inside school buses in South Texas. Atmos Environ 44:253–261

    Article  CAS  Google Scholar 

  • Zhou L, Hui MK (2003) Symbolic value of foreign products in the People’s Republic of China. J Int Marketing 11:36–58

    Article  Google Scholar 

  • Zuurbier M, Hoek G, Oldenwening M, Lenters V, Meliefste K, van den Hazel P, Brunekreef B (2010) Commuters’ exposure to particulate matter air pollution is affected by mode of transport, fuel type, and route. Environ Health Perspect. https://doi.org/10.1289/ehp.0901622

Download references

Acknowledgments

We thank Thais Caporal Borges for the help with the data collection and the two anonymous reviewers for their valuable suggestions.

Funding

This research was supported by grants 404146/2013-9 and 400273/2014-4 from the National Council for Scientific and Technological Development of Brazil (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Admir Créso Targino.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Targino, A.C., Rodrigues, M.V.C., Krecl, P. et al. Commuter exposure to black carbon particles on diesel buses, on bicycles and on foot: a case study in a Brazilian city. Environ Sci Pollut Res 25, 1132–1146 (2018). https://doi.org/10.1007/s11356-017-0517-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-0517-x

Keywords

Navigation