Skip to main content

Advertisement

Log in

Fine particulate-bound polycyclic aromatic hydrocarbons in vehicles in Rome, Italy

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Urban commuters are exposed to elevated levels of air pollutants, especially in heavily polluted areas and traffic congested roads. In order to assess the contribution of commuting to citizens’ exposure, measurements of fine particulate (PM2.5) and polycyclic aromatic hydrocarbons (PAHs) were carried out in cars, busses, and metro trains, within the LIFE+ EXPAH Project. Monitoring campaigns were performed in Rome, Italy, from April 2011 to August 2012. Inside the busses, the concentration of total PAHs ranged from 2.7 to 6.6 ng/m3 during the winter and from 0.34 to 1.51 ng/m3 in the summer. In cars, internal concentrations were in the range 2.2–7.3 and 0.46–0.82 ng/m3, respectively, in the 2-year time. Analogous differences between seasons were observed examining the benzo[a]pyrene-equivalent carcinogenicity. In the metro trains, total PAHs ranged from 1.19 to 2.35 ng/m3 and PM2.5 ranged from 17 to 31 μg/m3. The PM2.5 concentration in all transport modes ranged from 10 to 160 μg/m3 during the cold season and 15–48 μg/m3 during the warm time. The average inside-to-outside ratio (R I/O) was found to exceed 1.0 for PM2.5 only in busses, probably due to dust re-suspension caused by crowding and passenger activity. The molecular PAH signature suggests that vehicle emissions and biomass combustion were the major sources of commuters’ exposure to these toxicants in Rome. According to linear regression analysis, the PAH concentrations inside the vehicles were linked to those detected outside. Statistically significant differences (p < 0.05) were found between the in-vehicle locations and the urban pollution network stations, with higher PAH values detected, on the average, in these latter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

(BaA):

Benz[a]anthracene

(BbjkF):

Benzo[bjk]fluoranthene

(BaP):

Benzo[a]pyrene

(IP):

Indeno[1,2,3-cd]pyrene

(DBA):

Dibenz[ah]anthracene

(BPE):

Benzo[ghi]perylene

8PAHs:

Total PAH

References

  • Abi-Esber L, El-Fadel M (2013) Indoor to outdoor air quality associations with self-pollution implications inside passenger car cabins. Atmos Environ 81:450–463

    Article  CAS  Google Scholar 

  • Adams HS, Nieuwenhuijsen MJ, Colvile RN (2001) Determinants of fine particle (PM2.5) personal exposure levels in transport microenvironments, London, UK. Atmos Environ 35:4557–4566

    Article  CAS  Google Scholar 

  • Adams HS, Nieuwenhuijsen MJ, Colvile RN, Older MJ, Kendall M (2002) Assessment of road users’ elemental carbon personal exposure levels, London, UK. Atmos Environ 36:5335–5342

    Article  CAS  Google Scholar 

  • Adar SD, Davey M, Sullivan JR, Compher M, Szpiro A, Liu LJ (2008) Predicting airborne particle levels aboard Washington state school buses. Atmos Environ 42:7590–7599

    Article  CAS  Google Scholar 

  • Albinet A, Leoz-Garziandia E, Budzinski H, ViIlenave E (2007) Polycyclic aromatic hydrocarbons (PAHs), nitrated PAHs and oxygenated PAHs in ambient air of the Marseilles area (south of France): concentrations and sources. Sci Total Environ 384:280–292

    Article  CAS  Google Scholar 

  • Alm S, Jantunen MJ, Vartiainen M (1999) Urban commuter exposure to particle matter and carbon monoxide inside an automobile. J Expo Anal Environ Epidemiol 9:237–244

    Article  CAS  Google Scholar 

  • Amador-Muñoz O, Villalobos-Pietrini R, Miranda J, Vera-Avila LE (2011) Organic compounds of PM2.5 in Mexico Valley: spatial and temporal patterns, behavior and sources. Sci Total Environ 409:1453–1465

    Article  Google Scholar 

  • Asmi E, Antola M, Yli-Tuomi T, Jantunen M, Aarnio P, Makela T, Hillamo R, Hämeri K (2009) Driver and passenger exposure to aerosol particles in buses and trams in Helsinki, Finland. Sci Total Environ 407:2860–2867

    Article  CAS  Google Scholar 

  • Behrentz E, Fitz DR, Pankratz DV, Sabin LD, Colome S, Fruin SA, Winer AM (2004) Measuring self-pollution in school buses usinga tracer gas technique. Atmos Environ 38:3735–3746

    Article  CAS  Google Scholar 

  • Bostrom C-E, Gerde P, Hanberg A, Jernstrom B, Johansson C (2002) Cancer risk assessment, indicators and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environ Health Perspect 110:451–489

    Article  CAS  Google Scholar 

  • Briggs DJ, de Hoogh K, Morris C, Gulliver J (2008) Effects of travel mode on exposures to particulate air pollution. Environ Int 34:12–22

    Article  CAS  Google Scholar 

  • Caricchia AM, Chiavarini S, Pezza M (1999) Polycyclic aromatic hydrocarbons in the urban atmospheric particulate matter in the city of Naples (Italy). Atmos Environ 33:3731–3738

    Article  CAS  Google Scholar 

  • Cecinato A, Balducci C, Romagnoli P, Perilli M (2012) Airborne psychotropic substances in eight Italian big cities: burdens and behaviors. Environ Pollut 171:140–147

    Article  CAS  Google Scholar 

  • Cecinato A, Guerriero E, Balducci C, Muto V (2014a) Use of the PAH fingerprints for identifying pollution sources. Urban Climate 10:630–643

    Article  Google Scholar 

  • Cecinato A, Romagnoli P, Perilli M, Patriarca C, Balducci C (2014b) Psychotropic substances in indoor environments. Environ Int 71:88–93

    Article  Google Scholar 

  • Chan AT, Chung MW (2003) Indoor–outdoor air quality relationships in vehicle: effect of driving environment and ventilation modes. Atmos Environ 37:3795–3808

    Article  CAS  Google Scholar 

  • Chan LY, Lau WL, Lee SC, Zou SC, Cao ZX, Lai SC (2002) Exposure level of carbon monoxide and respirable suspended particulate in public transportation modes while commuting in urban area of Guangzhou China. Atmos Environ 36:5831–5840

    Article  CAS  Google Scholar 

  • Chang KF, Yuan T, Wu Q, Zhao W, Xie H, Ma J, Wang W (2007) PM10-bound polycyclic aromatic hydrocarbons (PAHs) and cancer risk estimation in the atmosphere surrounding an industrial area of shanghai, China. Water Air Soil Pollut 183:437–446

    Article  Google Scholar 

  • Cheng YH, Liu ZS, Yan JW (2012) Comparisons of PM10, PM2.5, particle number, and CO2 levels inside metro trains traveling in underground tunnels and on elevated tracks. Aerosol Air Qual Res 12:879–891

    CAS  Google Scholar 

  • De Nazelle A, Fruin S, Westerdahl D, Martinez D, Ripoll A, Kubesch N, Nieuwenhuijsen M (2012) A travel mode comparison of commuters’ exposures to air pollutants in Barcelona. Atmos Environ 59:151–159

    Article  CAS  Google Scholar 

  • Dimitriou K, Kassomenos P (2014) Indicators reflecting local and trans boundary sources of PM2.5 and PMCOARSE in Rome—impacts in air quality. Atmos Environ 96:154–162

    Article  CAS  Google Scholar 

  • Dons E, Int Panis L, Van Poppel M, Theunis J, Willems H, Torfs R, Wets G (2011) Impact of time-activity patterns on personal exposure to black carbon. Atmos Environ 45:3594–3602

    Article  CAS  Google Scholar 

  • Dons E, Int Panis L, Van Poppel M, Theunis J, Wets G (2012) Personal exposure to black carbon in transport microenvironments. Atmos Environ 55:392–398

    Article  CAS  Google Scholar 

  • EURACHEM (1998) The Fitness for Purpose of Analytical Methods (1998)

  • Fondelli MC, Chellini E, Yli-Tuomi T, Cenni I, Gasparrini A, Nava S, Garcia-Orellana I, Lupi A, Grechi D, Mallone S, Jantunen M (2008) Fine particle concentrations in buses and taxis in Florence, Italy. Atmos Environ 42:8185–8193

    Article  CAS  Google Scholar 

  • Forastiere F, Stafoggia M, Picciotto S, Bellander T, D’Ippoliti D, Lancki T, von Klot S, Nyberg F, Peters A, Pokkanen J, Sunyer J, Perucci CA (2005) A case-crossover analysis of out of hospital coronary death and air pollution in Rome, Italy. Am J Respir Crit Care Med 172:1549–1555

    Article  Google Scholar 

  • Fromme H, Oddoy A, Piloty M, Krause M, Lahrz T (1998) Polycyclic aromatic hydrocarbons (PAH) and diesel engine emission (elemental carbon) inside a car and a subway train. Sci Total Environ 217:165–173

    Article  CAS  Google Scholar 

  • Fruin SAN, Hudda C, Sioutas, Delfino RJ (2011) Predictive model for vehicle air exchange rates based on a large, representative sample. Environ Sci Technol 45:3569–3575

    Article  CAS  Google Scholar 

  • Gaga EO, Ari A, Döğeroğlu T, Çakırca EE, Machin NE (2012) Atmospheric polycyclic aromatic hydrocarbons in an industrialized city, Kocaeli, Turkey: study of seasonal variations, influence of meteorological parameters and health risk estimation. J Environ Monit 14:2219–2229

    Article  CAS  Google Scholar 

  • Geiss O, Barrero-Moreno J, Tirendi S, Kotzias D (2010) Exposure to particulate matter in vehicle cabins of private cars. Aerosol Air Qual Res 10:581–588

    CAS  Google Scholar 

  • Gómez-Perales JE, Colvile RN, Nieuwenhuijsen MJ, Fernández-Bremauntz A, Gutiérrez-Avedoy V, Páramo-Figueroa VH, Blanco-Jiménez S, Bueno-López E, Mandujano F, Bernabé Cabanillas R, Ortiz-Segovia E (2004) Commuters’ exposure to PM2.5, CO, and benzene in public transport in the metropolitan area of Mexico City. Atmos Environ 38:1219–1229

    Article  Google Scholar 

  • Greenwald R, Bergin MH, Yip F, Boehmer T, Kewada P, Shafer MM, Schauer JJ, Sarnat JA (2014) On-roadway In-cabin exposure to particulate matter: measurement results using both continuous and time-integrated sampling approaches. Aerosol Sci Technol 48:664–675

    Article  CAS  Google Scholar 

  • Grimmer G, Jacob J, Naujack KW (1983) Profile of the polycyclic aromatic compounds from crude oils—inventory by GC GC-MS. PAH in environmental materials, part 3. J Anal Chem 316:29–36

    Google Scholar 

  • GUO Gazzetta Ufficiale della Repubblica Italiana 2010 Ministry Decree No 55/2010

  • Guo H, Wang T, Simpson IJ, Blake DR, Yu XM, Kwok YH, Li YS (2004) Source contributions to ambient VOCs and CO at a rural site in eastern China. Atmos Environ 38:4551–4500

    Article  CAS  Google Scholar 

  • Hammond D, Jones S, Lalor M (2006) In-vehicle measurement of ultrafine particles on compressed natural gas, conventional diesel, and oxidation-catalyst diesel heavy-duty transit buses. Environ Monit Assess 125:239–246

    Article  Google Scholar 

  • Houston D, Wu J, Yang D, Jaime G (2013) Particle-bound polycyclic aromatic hydrocarbon concentrations in transportation microenvironments. Atmos Environ 71:148–157

    Article  CAS  Google Scholar 

  • IARC (2010) International Agency for Research on Cancer

  • Int Panis L, de Geus N, Vandenbulcke G, Willems H, Degraeuwe B, Bleux N, Mishra V, Thomas I (2010) Exposure to particulate matter in traffic: a comparison of cyclists and car passengers. Atmos Environ 44:2263–2270

    Article  CAS  Google Scholar 

  • Jo WK, Park KH (1999) Commuter exposure to volatile organic compounds under different driving conditions. Atmos Environ 33:409–417

    Article  CAS  Google Scholar 

  • Kameda Y, Shirai J, Komai T, Nakanishi J, Masunaga S (2005) Atmospheric polycyclic aromatic hydrocarbons: size distribution, estimation of their risk and their depositions to human respiratory tract. Sci Total Environ 340:71–80

    Article  CAS  Google Scholar 

  • Karanasiou A, Viana M, Querol X, Moreno T, de Leeuw F (2014) Assessment of personal exposure to particulate air pollution during commuting in European cities-recommendations and policy implications. Sci Total Environ 490:785–797

    Article  CAS  Google Scholar 

  • Katsoyiannis A, Terzi E, Cai Q-Y (2007) On the use of PAH molecular diagnostic ratios in sewage sludge for the understanding of the PAH sources. Is this use appropriate? Chemosphere 69:1337–1339

    Article  CAS  Google Scholar 

  • Kaur S, Nieuwenhuijse MJ, Colvile RN (2007) Fine particulate matter and carbon monoxide exposure concentrations in urban street transport microenvironments. Atmos Environ 41:4781–4810

    Article  CAS  Google Scholar 

  • Kavouras IG, Koutrakis P, Tsapakis M, Lagoudaki E, Stephanou EG, Von Baer D, Oyola P (2001) Source apportionment of urban particulate aliphatic and polynuclear aromatic hydrocarbons (PAHs) using multivariate methods. Environ Sci Technol 35:2288–2294

    Article  CAS  Google Scholar 

  • Khalili NR, Scheff PA, Holsen TM (1995) PAH source fingerprints for coke ovens, diesel and gasoline engines, highway tunnels, and wood combustion emissions. Atmos Environ 29:533–542

    Article  CAS  Google Scholar 

  • Kingham S, Longley I, Salmond J, Pattinson W, Shrestha K (2013) Variations in exposure to traffic pollution while travelling by different modes in a low density, less congested city. Environ Pollut 181:211–218

    Article  CAS  Google Scholar 

  • Knibbs LD, Cole-Huntera T, Morawskaa L (2011) A review of commuter exposure to ultrafine particles and its health effects. Atmos Environ 45:2611–2622

    Article  CAS  Google Scholar 

  • Limasset J-C, Diebold F, Hubert G (1993) Assessment of bus drivers’ exposure to the pollutants of urban traffic. Sci Total Environ 134:39–49

    Article  CAS  Google Scholar 

  • Manoli E, Kouras A, Samara K (2004) Profile analysis of ambient and source emitted particle-bound polycyclic aromatic hydrocarbons from three sites in Northern Greece. Chemosphere 56:867–878

    Article  CAS  Google Scholar 

  • Marr LC, Dzepina K, Jimenez JL, Reisen F, Bethel HL, Arey J, Gaffney JS, Marley NA, Molina LT, Molina MJ (2006) Sources and transformations of particle-bound polycyclic aromatic hydrocarbons in Mexico City. Atmos Chem Phys 6:1733–1745

    Article  CAS  Google Scholar 

  • Martuzevicius D, Kliucininkas L, Prasauskas T, Krugly E, Kauneliene V, Strandberg B (2011) Resuspension of particulate matter and PAHs from street dust. Atmos Environ 45:310–317

    Article  CAS  Google Scholar 

  • Masih J, Masih A, Kulshrestha A, Singhvi R, Taneja A (2010) Characteristics of polycyclic aromatic hydrocarbons in indoor and outdoor atmosphere in the north central part of India. J Hazard Mater 177:190–198

    Article  CAS  Google Scholar 

  • McNabola A, Broderick BM, Gill LW (2008) Relative exposure to fine particulate matter and VOCs between transport microenvironments in Dublin: personal exposure and uptake. Atmos Environ 42:6496–6512

    Article  CAS  Google Scholar 

  • McNabola A, Broderick BM, Gill LW (2009) The impacts of inter-vehicle spacing on in-vehicle air pollution concentrations in idling urban traffic conditions. Transp Res D 14:567–575

    Article  Google Scholar 

  • McQuaid RW, Chen T (2012) Commuting times—the role of gender, children and part-time work. Res Transp Econ 34:66–73

    Article  Google Scholar 

  • Meng Q, Williams R, Pinto JP (2012) Determinations of associations between ambient concentrations and personal exposures to ambient PM2.5, NO2, and O3 during DEARS. Atmos Environ 63:109–116

    Article  CAS  Google Scholar 

  • Miao Q, Bouchard M, Chen D, Rosenberg MW, Aronson KJ (2015) Commuting behaviors and exposure to air pollution in Montreal, Canada. Sci Total Environ 508:193–198

    Article  CAS  Google Scholar 

  • Molle R, Mazoué S, Géhin É, Ionescu A (2013) Indoor–outdoor relationships of airborne particles and nitrogen dioxide inside Parisian buses. Atmos Environ 69:240–248

    Article  CAS  Google Scholar 

  • Nisbet ICT, LaGoy PK (1992) Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul Toxicol Pharmacol 16:290–300

    Article  CAS  Google Scholar 

  • Ott W, Klepeis N, Switzer P (2008) Air change rates of motor vehicles and in-vehicle pollutant concentrations from second hand smoke. J Expo Sci Environ Epidemiol 18:312–325

    Article  CAS  Google Scholar 

  • Ozgen S, Ripamonti G, Malandrini A, Ragettli MS, Lonati G (2016) Particle number and mass exposure concentrations by commuter transport modes in Milan, Italy. Environmental Science 3:168–184. doi:10.3934/environsci.2016.2.168

    CAS  Google Scholar 

  • Pandey PK, Pate KS, Lenicek J (1999) Polycyclic aromatic hydrocarbons: need for assessment of health risks in India? Study of an urban-industrial location in India. Environ Monit Assess 59:287–319

    Article  CAS  Google Scholar 

  • Park SS, Kim YJ, Kang CH (2002) Atmospheric polycyclic aromatic hydrocarbons in Seoul, Korea. Atmos Environ 36:2917–2924

    Article  CAS  Google Scholar 

  • Piccardo MT, Stella A, Redaelli A, Balducci D, Coradeghini R, Minoia C, Valerio F (2004) Personal daily exposures to benzo(a)pyrene of taxi drivers in genoa, Italy. Sci Total Environ 330:39–45

    Article  CAS  Google Scholar 

  • Pietrogrande MC, Perrone MG, Sangiorgi G, Ferrero L, Bolzacchini E (2014) Data handling of GC/MS signals for characterization of PAH sources in Northern Italy aerosols. Talanta 120:283–288

    Article  CAS  Google Scholar 

  • Prajapati SK, Tripathi BD (2008) Biomonitoring seasonal variation of urban air polycyclic aromatic hydrocarbons (PAHs) using Ficusbenghalensis leaves. Environ Pollut 151:543–548

    Article  CAS  Google Scholar 

  • Praml G, Schierl R (2000) Dust exposure in Munich public transportation: a comprehensive 4-year survey in buses and trams. Int Arch Occup Environ Health 73:209–214

    Article  CAS  Google Scholar 

  • Querol X, Moreno T, Karanasiou A, Reche C, Alastuey A, Viana M, Font O, Gil J, de Miguel E, Capdevila M (2012) Variability of levels and composition of PM10 and PM2.5 in the Barcelona metro system. Atmos Chem Phys 12:5055–5076

    Article  CAS  Google Scholar 

  • Rank J, Folke J, Jespersen PH (2001) Differences in cyclists and car drivers exposure to air pollution from traffic in the city of Copenhagen. Science Total Environ 279:131–136

    Article  CAS  Google Scholar 

  • Ravindra K, Sokhi R, Grieken RV (2008) Review: atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmosperic Environment 42:2895–2921

    Article  CAS  Google Scholar 

  • Rodes C, Sheldon L, Whitaker D, Clayton A, Fitzgerald K, Flanagan J, DiGenova F, Hering S, Frazier C (1998) Measuring concentrations of selected air pollutants inside California vehicles Final Report, Contract No. 95-339. California Air Resources Board, Sacramento, CA

  • Rogge WF, Hildemann LM, Mazurek MA, Cass GR, Simoneit BRT (1993) Sources of fine organic aerosol: non-catalyst and catalyst-equipped automobiles and heavy duty diesel trucks. Environ Sci Technol 27:636–651

    Article  CAS  Google Scholar 

  • Romagnoli P, Balducci C, Perilli M, Gherardi M, Gordiani A, Gariazzo C, Gatto MP, Cecinato A (2014) Indoor PAHs at schools, homes and offices in Rome, Italy. Atmos Environ 92:51–59

    Article  CAS  Google Scholar 

  • Rosenlund M, Forastiere F, Porta D, De Sario M, Badaloni C, Perucci CA (2009) Traffic-related air pollution in relation to respiratory symptoms, allergic sensitization and lung function in school children. Torax 64:573–580

    CAS  Google Scholar 

  • Sabin LD, Kozawa K, Behrentz E, Winer AM, Fitz DR, Pankratz DV, Colome SD, Fruin SA (2005) Analysis of real-time variables affecting children’s exposure to diesel-related pollutants during school bus commutes in Los Angeles. Atmos Environ 39:5243–5254

    Article  CAS  Google Scholar 

  • Shikiya DC, Liu CS, Hahn MI, Juarros J, Barcikowski W (1989) In-vehicle air toxics characterization study in the south coast Air Basin. Final report. South Coast Air Quality Management District, El Monte

    Google Scholar 

  • Sienra MR, Rosazza TNG, Prendez M (2005) Polycyclic aromatic hydrocarbons and their molecular diagnostic ratios in urban atmospheric respirable particulate matter. Atmos Res 75:267–281

    Article  CAS  Google Scholar 

  • Smith DJT, Harrison RM (1996) Concentrations, trends and vehicle source profile of polynuclear aromatic hydrocarbons in the U.K. atmosphere. Atmosperic Environment 30:2513–2525

    Article  CAS  Google Scholar 

  • Solomon GM, Campbell TR, Feuer GR, Masters J, Samkian A, Paul KA (2001) No breathing in the aisles: diesel exhaust inside school buses. Natural Resources Defense Council and Coalition for Clean Air, New York

    Google Scholar 

  • Suarez L, Mesas S, Iglesias V, Silva C, D. Caceres D, Ruiz-Rudolph P (2014) Personal exposure to particulate matter in commuters using different transport modes (bus, bicycle, car and subway) in an assigned route in downtown Santiago, Chile. Environ Sci: Processes Impacts 16:1309–1317

    CAS  Google Scholar 

  • Tobiszewski M, Namieśnik J (2012) PAH diagnostic ratios for the identification of pollution emission sources. Environ Pollut 162:110–119

    Article  CAS  Google Scholar 

  • Velasco E, Tan SH (2016) Particles exposure while sitting at bus stops of hot and humid Singapore. Atmos Environ 142:251–263

    Article  CAS  Google Scholar 

  • Wang D, Yang M, Jia H, Zhou L, Li Y (2008) Seasonal variation of polycyclic aromatic hydrocarbons in soil and air of Dalian areas, China: an assessment of soil-air exchange. J Environ Monit 10:1076–1083

    Article  CAS  Google Scholar 

  • Wargo J, Brown D, Cullen M, Addiss S, Alderman N (2002) Children’s exposure to diesel exhaust on school buses. Environmental and Human Health, Inc., North Haven

    Google Scholar 

  • WHO (2000) Air quality guidelines for Europe, second edn. WHO Regional Publications, Eur. Series No. 91. World Health Organization, Regional Office for Europe, Copenhagen

    Google Scholar 

  • WHO (2005) Health effects of transport-related air pollution. WHO Regional Office for Europe, Copenhagen

    Google Scholar 

  • Wu D-L, Lin M, Chan C-Y, Li W-Z, Tao Y, Li Y-P, Sang X-F, Chun-Wei Bu C-W (2013) Influences of commuting mode, air conditioning mode and meteorological parameters on fine particle (PM2.5) exposure levels in traffic microenvironments. Aerosol Air Qual Res 13:709–720

    Google Scholar 

  • Xiao Y, Tong F, Kuang Y, Chen B (2014) Distribution and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in forest soils from urban to rural areas in the Pearl River Delta of southern China. Int J Environ Res Public Health 11:2642–2656

    Article  Google Scholar 

  • Yan C, Zheng M, Yang Q, Zhang Q, Qiu X, Zhang Y, Fu H, Zhu Y, Zhu T, Li X (2015) Commuter exposure to particulate matter and particle-bound PAHs in three transportation modes in Beijing, China. Environ Pollut 204:199–206

    Article  CAS  Google Scholar 

  • Yunker MB, Macdonald RW, Vingarzan R, Mitchell RH, Goyette D, Sylvestre S (2002) PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem 33:489–515

    Article  CAS  Google Scholar 

  • Zhang Y, Tao S (2009) Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004. Atmos Environ 43:812–819

    Article  CAS  Google Scholar 

  • Zhao J, Zhang F, Xu L, Chen J, Xu Y (2011) Spatial and temporal distribution of polycyclic aromatic hydrocarbons (PAHs) in the atmosphere of Xiamen, China. Sci Total Environ 409:5318–5327

    Article  CAS  Google Scholar 

  • Zhu Y, Eiguren-Fernandez A, Hinds WC, Miguel AH (2007) In-cabin commuter exposure to ultrafine particles on Los Angeles freeways. Environ Sci Technol 41:2138–2145

    Article  CAS  Google Scholar 

  • Zuurbier M, Hoek G, Oldenwening M, Lenters V, Meliefste K, van den Hazel P, Brunekreef B (2010) Commuters’ exposure to particulate matter air pollution is affected by mode of transport, fuel type, and route. Environ Health Perspect 118:783–789

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the EU LIFE+ instrument, which has supported the EXPAH project. Dr. Giuliano Fontinovo for processing map and Dr. Luca Tofful for excellent technical assistance in sampling operations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Romagnoli.

Additional information

Responsible editor: Constantini Samara.

Highlights

• The commuters’ exposure to particle-bound PAHs in Rome, Italy, was evaluated.

• Commuters’ exposure could exceeded the annual mean European target value for BaP (1.0 ng/m3) in winter.

• Change associated with commuting by busses, cars, and metro trains was examined.

• The indoor/outdoor ratio of PAHs was close to one for busses and slightly lower for cars.

• The in-vehicle exposure to PM2.5 was statistically higher than the urban background.

Electronic supplementary material

Table S1

Validation parameters of the GC/MS method (EURACHEM 1998) (limit of definition (LOD), limit of quantification (LOQ), number of replicates (n). (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romagnoli, P., Balducci, C., Cecinato, A. et al. Fine particulate-bound polycyclic aromatic hydrocarbons in vehicles in Rome, Italy. Environ Sci Pollut Res 24, 3493–3505 (2017). https://doi.org/10.1007/s11356-016-8098-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-8098-7

Keywords

Navigation