Skip to main content
Log in

Interactions and accumulation differences of metal(loid)s in three sea cucumber species collected from the Northern Mediterranean Sea

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This study was conducted on Holothuria polii, Holothuria tubulosa, and Holothuria mammata collected from five stations with different depths in the Northern Mediterranean Sea. The body walls and guts of these holothurians were examined in terms of interactions of 10 metals (iron (Fe), copper (Cu), manganese (Mn), zinc (Zn), chromium (Cr), cobalt (Co), vanadium (V), nickel (Ni), cadmium (Cd), and lead (Pb)) and one metalloid (arsenic (As)) using a multivariate analysis, and interspecies differences were determined. The multivariate analysis of variance (MANOVA) revealed significant differences between the species in terms of metal(loid) accumulations. The principal component analysis (PCA) showed a more association between H. tubulosa and H. polii with regard to the accumulation. The cluster analysis (CA) located Pb concentrations of the guts to the farthest place from all elements regardless of the species. A correlation analysis displayed that the element concentrations of the guts were more closely related to each other compared with those of the walls. The most inconsistent element in terms of correlations was the gut Fe contents. Accordingly, while Fe concentrations of H. mammata and H. tubulosa were correlated with all elements (except Pb) in divalent metal transporter 1 (DMT1) (divalent cation transporter 1 (DCT1) or natural resistance-associated macrophage protein 2 (NRAMP2)) belonging to the NRAM protein family, this was not the case in H. polii. Consequently, significant relationships between accumulated metal(loid)s that changed by tissues and sea cucumber species were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbas Alkarkhi FM, Ismail N, Easa AM (2008) Assessment of arsenic and heavy metal contents in cockles (Anadara granosa) using multivariate statistical techniques. J Hazard Mater 150:783–789

    Article  CAS  Google Scholar 

  • Ahearn GA, Mandal PK, Mandal A (2004) Mechanisms of heavy-metal sequestration and detoxification in crustaceans: a review. J Comp Physiol B 174:439–452

    Article  CAS  Google Scholar 

  • Andreini C, Bertini I, Cavallaro G, Holliday GL, Thornton JM (2008) Metal ions in biological catalysis: from enzyme databases to general principles. J Biol Inorg Chem 13:1205–1218

    Article  CAS  Google Scholar 

  • Aydın M (2008) The commercial sea cucumbers fishery in Turkey SPC Beche de Mer. Information Bulletin 28:40–43

    Google Scholar 

  • Aydın M, Erkan S (2015) Identification and some biological characteristics of commercial sea cucumber in the Turkey coast waters. International Journal of Fisheries and Aquatic Studies 3:260–265

    Google Scholar 

  • Bridges CC, Zalups RK (2005) Molecular and ionic mimicry and the transport of toxic metals. Toxicol Appl Pharmacol 204:274–308

    Article  CAS  Google Scholar 

  • Conand C (2006) Sea cucumber biology: taxonomy; distribution; biology; conservation status. In Bruckner A.W. (ed.). The proceedings of the CITES workshop on the conservation of sea cucumbers in the families Holothuriidae and Stichopodidae OAA Technical Memorandum. 33–50.

  • Conti ME, Bocca B, Iacobucci M, Finoia MG, Mecozzi M, Pino A, Alimonti A (2010) Baseline trace metals in seagrass, algae, and mollusks in a southern tyrrhenian ecosystem (Linosa Island, Sicily). Arch Environ Contam Toxicol 58:79–95

    Article  CAS  Google Scholar 

  • Costa Pessoa J, Garribba E, Santos MFA, Santos S (2015) Vanadium and proteins: uptake, transport, structure, activity and function. Coord Chem Rev 301:30249–30286

    Google Scholar 

  • Da Silva JAL (2012) Vanadium in biology: its chemistry and some of its contributions on environmental cycles of chemical elements. In: Vanadium: chemical properties, uses and environmental effects, pp. 1–25.

  • De Oliveira LM, Gress J, De J, Rathinasabapathi B, Marchi G, Chen Y, Ma LQ (2016) Sulfate and chromate increased each other’s uptake and translocation in As-hyperaccumulator Pteris vittata. Chemosphere 147:36–43

    Article  CAS  Google Scholar 

  • Fikirdeşici Ergen Ş, Üçüncü Tunca E, Ozkan AD, Ölmez TT, Acaröz E, Altındağ A, Tekinay T, Tunca E (2015) Interactions between metals accumulated in the narrow-clawed crayfish Astacus leptodactylus (Eschscholtz, 1823) in Dikilitaş Lake, Turkey. Chem Ecol 31:455–465

    Article  Google Scholar 

  • Garrick MD, Singleton ST, Vargas F, Kuo HC, Zhao L, Knöpfel M, Davidson T, Costa M, Paradkar P, Roth JA, Garrick LM (2006) DMT1: which metals does it transport? Biol Res 39:79–85

    Article  CAS  Google Scholar 

  • Givianrad MH, Larijani K, Jamili S, Adeli B (2014) Assessment of heavy metals by ligand-less cloud point extraction in sediment and Holothuria parva (Echinodermata, Holothuroidea). Indian J Geo-Mar Sci 43:825–830

    Google Scholar 

  • Gonzalez-Wanguemert M, Aydın M, Chantal C (2014) Assessment of target sea cucumber populations from Aegean Sea (Turkey): first insights for a right management of their fisheries. Ocean & Coastal Management 92:87–94

    Article  Google Scholar 

  • Guner U (2007) Freshwater crayfish Astacus leptodactylus (Eschscholtz, 1823) accumulates and depurates copper. Environ Monit Assess 133:365–369

    Article  CAS  Google Scholar 

  • Illing AC, Shawki A, Cunningham CL, Mackenzie B (2012) Substrate profile and metal-ion selectivity of human divalent metal-ion transporter-1. J Biol Chem 287:30485–30496

    Article  CAS  Google Scholar 

  • Jinadasa BKKK, Samanthi RI, Wicramsinghe I (2014) Trace metal accumulation in tissue of sea cucumber species; north-western sea of Sri Lanka. American Journal of Public Health Research 2:1–5

    Google Scholar 

  • Kawakami N, Ueki T, Matsuo K, Gekko K, Michibata H (2006) Selective metal binding by vanabin2 from the vanadium-rich ascidian, Ascidia sydneiensis samea. Biochim Biophys Acta, Gen Subj 1760:1096–1101

    Article  CAS  Google Scholar 

  • Kitayama H, Yamamoto S, Michibata H, Ueki T (2013) Metal ion selectivity of the vanadium(v)-reductase vanabin2. Dalton Trans 42:11921–11925

    Article  CAS  Google Scholar 

  • Kouba A, Buřič M, Kozák P (2010) Bioaccumulation and effects of heavy metals in crayfish: a review. Water Air Soil Pollut 211:5–16

    Article  CAS  Google Scholar 

  • Kramer U, Talke IN, Hanikenne M (2007) Transition metal transport. FEBS Lett 581:2263–2272

    Article  Google Scholar 

  • Liu Y, Zhou Q, Xu J, Xue Y, Liu X, Wang J, Xue C (2016) Assessment of total and organic vanadium levels and their bioaccumulation in edible sea cucumbers: tissues distribution, inter-species-specific, locational differences and seasonal variations. Environ Geochem Health 38:111–122

    Article  CAS  Google Scholar 

  • Liu Y, Zhou Q, Zhao Y, Wang Y, Wang Y, Wang J, Xu J, Xue C (2015) Enrichment, distribution of vanadium-containing protein in vanadium-enriched sea cucumber Apostichopus japonicus and the ameliorative effect on insulin resistance. Biol Trace Elem Res. doi:10.1007/s12011-015-0517-y

    Google Scholar 

  • Lopez FJS, Garcia MDG, Vidal JLM, Aguilera PA, Frenich AG (2004) Assessment of metal contamination in Donana National Park (Spain) using crayfish (Procamburus clarkii). Environ Monit Assess 93:17–29

    Article  Google Scholar 

  • MacTavish T, Stenton-Dozey J, Vopel K, Savage C (2012) Deposit-feeding sea cucumbers enhance mineralization and nutrient cycling in organically-enriched coastal sediments. PLoS One 7:e50031

    Article  CAS  Google Scholar 

  • Martinez-Finley EJ, Chakraborty S, Fretham SJB, Aschner M (2012) Cellular transport and homeostasis of essential and nonessential metals. Metallomics 4:593–605

    Article  CAS  Google Scholar 

  • Mathies G, Gast P, Chasteen ND, Luck AN, Mason AB, Groenen EJJ (2015) Exploring the Fe(III) binding sites of human serum transferrin with EPR at 275 GHz. J Biol Inorg Chem 20:487–496

    Article  CAS  Google Scholar 

  • McAloon KM, Mason RP (2003) Investigations into the bioavailability and bioaccumulation of mercury and other trace metals to the sea cucumber, Sclerodactyla briareus, using in vitro solubilization. Mar Pollut Bull 46:1600–1608

    Article  CAS  Google Scholar 

  • Menon AV, Chang J, Kim J (2016) Mechanisms of divalent metal toxicity in affective disorders. Toxicology 339:58–72

    Article  CAS  Google Scholar 

  • Mims MP, Prchal JT (2005) Divalent metal transporter 1. Hematology 10:339–345

    Article  CAS  Google Scholar 

  • Mohammadizadeh M, Bastami KD, Ehsanpour M, Afkhami M, Mohammadizadeh F, Esmaeilzadeh M (2015) Heavy metal accumulation in tissues of two sea cucumbers, Holothuria leucospilota and Holothuria scabra in the northern part of Qeshm Island, Persian Gulf. Mar Pollut Bull 103:354–359

    Article  Google Scholar 

  • Morina A, Morina F, Djikanović V, Spasić S, Krpo-Ćetković J, Lenhardt M (2016) Seasonal variation in element concentrations in surface sediments of three rivers with different pollution input in Serbia. J Soils Sed 16:255–265

    Article  CAS  Google Scholar 

  • Nakayama SMM, Ikenaka Y, Muzandu K, Choongo K, Oroszlany B, Teraoka H, Mizuno N, Ishizuka M (2010) Heavy metal accumulation in lake sediments, fish (Oreochromis niloticus and Serranochromis thumbergi), and crayfish (Cherax quadricarinatus) in Lake Itezhi-tezhi and Lake Kariba, Zambia. Arch Environ Contam Toxicol 59:291–300

    Article  CAS  Google Scholar 

  • Neelam V, Hardaway CJ, Richert JC, Sneddon JA (2010) Laboratory controlled study of uptake of copper, lead, and zinc in crawfish (Procambrus clarkii) by inductively coupled plasma optical emission spectrometry. Anal Lett 43:1770–1779

    Article  CAS  Google Scholar 

  • Purcell SW, Samyn Y, Conand C (2012) Commercially important sea cucumbers of the world. FAO Species Catalogue for Fishery Purposes. No. 6. FAO, Rome, 150 pp. 30 colour plates.

  • Quarles Jr CD, Marcus RK, Brumaghim JL (2011) Competitive binding of Fe3+, Cr3+, and Ni2+ to transferrin. J Biol Inorg Chem 16:913–921

    Article  Google Scholar 

  • Rodriguez-Hernandez MC, Bonifas I, Torre Alfaro De La MC, Flores-Flores JL, Bañuelos-Hernández B, Patiño-Rodríguez O (2015) Increased accumulation of cadmium and lead under Ca and Fe deficiency in Typha latifolia: a study of two pore channel (TPC1) gene responses. Environ Exp Bot 115:38–48

    Article  CAS  Google Scholar 

  • Rzymski P, Niedzielski P, Klimaszyk P, Poniedzialek B (2014) Bioaccumulation of selected metals in bivalves (Unionidae) and Phragmites australis inhabiting a municipal water reservoir. Environ Monit Assess 186:3199–3212

    Article  CAS  Google Scholar 

  • Smyth DJ, Glanfield A, McManus DP, Hacker E, Blair D, Anderson GJ, Jones MK (2006) Two isoforms of a divalent metal transporter (DMT1) in Schistosoma mansoni suggest a surface-associated pathway for iron absorption in schistosomes. J Biol Chem 281:2242–2248

    Article  CAS  Google Scholar 

  • Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Maathuis FJM (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25:158–165

    Article  CAS  Google Scholar 

  • Tunca E, Ucuncu E, Kurtulus B, Ozkan AD, Atasagun S (2013a) Accumulation trends of metals and a metalloid in the freshwater crayfish Astacus leptodactylus from Lake Yenicaga (Turkey). Chem Ecol 29:754–769

    Article  CAS  Google Scholar 

  • Tunca E, Ucuncu E, Ozkan AD, Ulger ZE, Tekinay T (2013b) Tissue distribution and correlation profiles of heavy-metal accumulation in the freshwater crayfish Astacus leptodactylus. Arch Environ Contam Toxicol 64:676–691

    Article  CAS  Google Scholar 

  • Turk Culha S, Dereli H, Karaduman FR, Culha M (2016) Assessment of trace metal contamination in the sea cucumber (Holothuria tubulosa) and sediments from the Dardanelles Strait (Turkey). Environ Sci Pollut Res Int. doi:10.1007/s11356-016-6152-0

    Google Scholar 

  • Ueki T, Kawakami N, Toshishige M, Matsuo K, Gekko K, Michibata H (2009) Characterization of vanadium-binding sites of the vanadium-binding protein vanabin2 by site-directed mutagenesis. Biochim Biophys Acta, Gen Subj 1790:1327–1333

    Article  CAS  Google Scholar 

  • Ueki T, Shintaku K, Yonekawa Y, Takatsu N, Yamada H, Hamada T, Hirota H, Michibata H (2007) Identification of vanabin-interacting protein 1 (VIP1) from blood cells of the vanadium-rich ascidian Ascidia sydneiensis samea. Biochim Biophys Acta, Gen Subj 1770:951–957

    Article  CAS  Google Scholar 

  • Ueki T, Yamaguchi N, Romaidi Isago Y, Tanahashi H (2015) Vanadium accumulation in ascidians: a system overview. Coord Chem Rev 301–302:300–308

    Article  Google Scholar 

  • Varmuza K, Filzmoser P (2009) Introduction to multivariate statistical analysis in chemometrics. CRC, Boca Raton

    Book  Google Scholar 

  • Waldron KJ, Rutherford JC, Ford D, Robinson NJ (2009) Metalloproteins and metal sensing. Nature 460:823–830

    Article  CAS  Google Scholar 

  • Warnau M, Dutrieux S, Ledent G, Rodriguez Y, Baena AM, Dúbois P (2006) Heavy metals in the sea cucumber Holothuria tubulosa (Echinodermata) from the Mediterranean Posidonia oceanica ecosystem: body compartment, seasonal, geographical and bathymetric variations. Environ Bioindic 1:268–285

    Article  CAS  Google Scholar 

  • Weng N, Wang W-X (2014) Variations of trace metals in two estuarine environments with contrasting pollution histories. Sci Total Environ 485–486:604–614

    Article  Google Scholar 

  • Yap CK, Edward FB, Tan SG (2010) Similarities and differences of metal distributions in the tissues of molluscs by using multivariate analyses. Environ Monit Assess 165:39–53

    Article  CAS  Google Scholar 

  • Yoshihara M, Ueki T, Watanabe T, Yamaguchi N, Kamino K, Michibata H (2005) Vanabin P, a novel vanadium-binding protein in the blood plasma of an ascidian, Ascidia sydneiensis samea. Biochim Biophys Acta, Gene Struct Expression 1730:206–214

    Article  CAS  Google Scholar 

  • Yoshihara M, Ueki T, Yamaguchi N, Kamino K, Michibata H (2008) Characterization of a novel vanadium-binding protein (VBP-129) from blood plasma of the vanadium-rich ascidian Ascidia sydneiensis samea. Biochim Biophys Acta, Gen Subj 1780:256–263

    Article  CAS  Google Scholar 

  • Zitka O, Krystofova O, Hynek D, Sobrova P, Kaiser J, Sochor J, Zehnalek J, Babula P, Ferrol N, Kizek R, Adam V (2013) Metal transporters in plants. Springer, Berlin, pp. 19–41

    Google Scholar 

Download references

Acknowledgments

This study was supported by Istanbul University’s Research Fund (Project Number: 50025/2352) and Ordu University’s Research Fund (Project Number: AR-1501). We are grateful to Dr. Tatsuya UEKI for his support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evren Tunca.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Editorial Responsible: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tunca, E., Aydın, M. & Şahin, Ü. Interactions and accumulation differences of metal(loid)s in three sea cucumber species collected from the Northern Mediterranean Sea. Environ Sci Pollut Res 23, 21020–21031 (2016). https://doi.org/10.1007/s11356-016-7288-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7288-7

Keywords

Navigation