Skip to main content
Log in

Ordering Individuals with Sum Scores: The Introduction of the Nonparametric Rasch Model

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

When a simple sum or number-correct score is used to evaluate the ability of individual testees, then, from an accountability perspective, the inferences based on the sum score should be the same as the inferences based on the complete response pattern. This requirement is fulfilled if the sum score is a sufficient statistic for the parameter of a unidimensional model. However, the models for which this holds true are known to be restrictive. It is shown that the less restrictive nonparametric models could result in an ordering of persons that is different from an ordering based on the sum score. To arrive at a fair evaluation of ability with a simple number-correct score, ordinal sufficiency is defined as a minimum condition for scoring. The monotone homogeneity model, together with the property of ordinal sufficiency of the sum score, is introduced as the nonparametric Rasch model. A basic outline for testable hypotheses about ordinal sufficiency, as well as illustrations with real data, is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. This function computes the classical KS-test for continuous distributions, and therefore, does not allow for ties. However, alternative analyses with the ks.boot function from the Matching package (Sekhon, 2011), a function that allows for ties, show similar results.

References

  • Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee’s ability. In F. M. Lord & M. R. Novick (Eds.), Statistical theories of mental test scores (pp. 395–479). Reading: Addison-Wesley.

    Google Scholar 

  • Conover, W. J. (1971). Practical nonparametric statistics. New York: Wiley.

    Google Scholar 

  • Doob, J. (1949). Heuristic approach to the Kolmogorov–Smirnov theorems. The Annals of Mathematical Statistics, 20, 393–403.

    Article  Google Scholar 

  • Fischer, G. H. (1974). Einfuhrung in die Theorie psychologischer tests. (Introduction to the theory of psychological tests). Bern: Verlag Hans Huber.

    Google Scholar 

  • Grayson, D. A. (1988). Two-group classification in latent trait theory: Scores with monotone likelihood ratio. Psychometrika, 53, 383–392.

    Article  Google Scholar 

  • Guttman, L. (1950). The basis for scalogram analysis. In S. Stouffer, L. Guttman, E. Suchman, P. Lazarsfeld, S. Star, & J. Clausen (Eds.), Measurement and prediction (Vol. 4, pp. 60–90). Princeton, NY: Princeton University Press.

    Google Scholar 

  • Hemker, B. T., Sijtsma, K., Molenaar, I. W., & Junker, B. W. (1997). Stochastic ordering using the latent trait and the sum score in polytomous IRT models. Psychometrika, 62(3), 331–347.

    Article  Google Scholar 

  • Hessen, D. J. (2005). Constant latent odds-ratios models and the Mantel–Haenszel null hypothesis. Psychometrika, 70(3), 497–516.

    Article  Google Scholar 

  • Huynh, H. (1994). A new proof for monotone likelihood ratio for the sum of independent Bernoulli random variables. Psychometrika, 59, 77–79.

    Article  Google Scholar 

  • Lord, F. M., & Novick, M. R. (1968). Statistical theories of mental test scores. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Maris, G. (2008). A note on “constant latent odds-ratios models and the Mantel–Haenszel null hypothesis” Hessen, 2005. Psychometrika, 73(1), 153–157.

    Article  PubMed Central  PubMed  Google Scholar 

  • Meijer, R. R., Sijtsma, K., & Smid, N. G. (1990). Theoretical and empirical comparison of the Mokken and the Rasch approach to IRT. Applied Psychological Measurement, 14(3), 283–298.

    Article  Google Scholar 

  • Milgrom, P. R. (1981). Good news and bad news: Representation theorems and application. The Bell Journal of Economics, 12(2), 380–391.

    Article  Google Scholar 

  • Mokken, R. (1971). A theory and procedure of scale analysis. The Hague: Mouton.

    Book  Google Scholar 

  • Post, W. J. (1992). Nonparametric unfolding models. A latent structure approach. Leiden: DSWO Press.

    Google Scholar 

  • R Development Core Team (2013). R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. Retrieved from http://www.R-project.org.

  • Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Copenhagen: The Danish Institute of Educational Research. (Expanded edition, 1980. Chicago: The University of Chicago Press).

  • Ross, S. M. (1996). Stochastic processes (2nd ed.). New York: Wiley.

    Google Scholar 

  • Sekhon, J. S. (2011). Multivariate and propensity score matching software with automated balance optimization: The matching package for R. Journal of Statistical Software, 42(7), 1–52.

    Article  Google Scholar 

  • Sijtsma, K., & Hemker, B. T. (2000). A taxonomy of IRT models for ordering persons and items using simple sum scores. Journal of Educational and Behavioral Statistics, 25(4), 391–415.

    Article  Google Scholar 

  • Sijtsma, K., & Molenaar, I. (2002). Introduction to nonparametric item response theory. Thousand Oaks, California: Sage Publications Inc.

    Google Scholar 

  • Verhelst, N. D., & Glas, C. A. W. (1995). The one parameter logistic model: OPLM. In G. H. Fischer & I. W. Molenaar (Eds.), Rasch models: Foundations, recent developments and applications (pp. 215–238). New York: Springer.

    Chapter  Google Scholar 

  • Verhelst, N. D., Glas, C. A. W., & Verstralen, H. H. F. M. (1993). OPLM: One parameter logistic model. Computer program and manual. Arnhem: Cito.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Zwitser.

Appendix

Appendix

Let n be the number of items in \(\mathbf{z}\), and define

$$\begin{aligned} X_+&= \sum _i X_i\\ Y_+&= \sum _h Y_h\\ Z_+&= \sum _g Z_g \end{aligned}$$

with realizations \(x_+\), \(y_+\) and \(z_+\), respectively.

Following from the partitioning of \(\mathbf{x}_1\) and \(\mathbf{x}_2\),

$$\begin{aligned} x_{+2}&= y_+ + z_+,\\ x_{+1}&= y_+ + (n-z_+). \end{aligned}$$

In cases where

$$\begin{aligned} x_{+2}>x_{+1}, \end{aligned}$$

we obtain

$$\begin{aligned} z_+&>(n-z_+), \\ z_+&> \frac{n}{2}. \end{aligned}$$

Now we consider the posterior distribution

$$\begin{aligned} f(\theta |\mathbf{X}=\mathbf{x})=\frac{\prod _iP(x_i|\theta )^{x_i}[1-P(x_i|\theta )]^{1-x_i} f(\theta )}{P(\mathbf{X}=\mathbf{x})}. \end{aligned}$$

The likelihood ratio can be written as

$$\begin{aligned} \frac{f(\theta |\mathbf{X}=\mathbf{x}_2)}{f(\theta |\mathbf{X}=\mathbf{x}_1)}&= \frac{\frac{\prod _iP(x_{i2}|\theta )^{x_{i2}}[1-P(x_{i2}|\theta )]^{1-x_{i2}} f(\theta )}{P(\mathbf{X}=\mathbf{x}_2)}}{\frac{\prod _iP(x_{i1}\theta )^{x_{i1}}[1-P(x_{i1}\theta )]^{1-x_{i1}} f(\theta )}{P(\mathbf{X}=\mathbf{x}_1)}} \\&=\frac{\prod _iP(x_{i2}|\theta )^{x_{i2}}[1-P(x_{i2}|\theta )]^{1-x_{i2}} }{P(\mathbf{X}=\mathbf{x}_1)}\frac{P(\mathbf{X}=\mathbf{x}_2)}{\prod _iP(x_{i1}|\theta )^{x_{i1}}[1-P(x_{i1}|\theta )]^{1-x_{i1}}} \\&=\prod _i\frac{P(x_{i2}|\theta )^{x_{i2}}[1-P(x_{i2}\theta )]^{1-x_{i2}} }{P(x_{i1}|\theta )^{x_{i1}}[1-P(x_{i1}|\theta )]^{1-x_{i1}} }\frac{P(\mathbf{X}=\mathbf{x}_1)}{P(\mathbf{X}=\mathbf{x}_2)} \\&=\prod _h\frac{P(y_h|\theta )^{y_h}[1-P(y_h|\theta )]^{1-y_h}}{P(y_h|\theta )^{y_h}[1-P(y_h|\theta )]^{1-y_h}} \prod _g\frac{P(z_g|\theta )^{z_g}[1-P(z_g|\theta )]^{1-z_g} }{P(z_g|\theta )^{1-z_g}[1-P(z_g|\theta )]^{z_g}} \frac{P(\mathbf{X}=\mathbf{x}_1)}{P(\mathbf{X}=\mathbf{x}_2)} \\&=\prod _g\left( \frac{P(z_g|\theta )}{1-P(z_g|\theta )}\right) ^{z_g}\left( \frac{1-P(z_g|\theta )}{P(z_g|\theta )}\right) ^{1-z_g}\frac{P(\mathbf{X}=\mathbf{x}_1)}{P(\mathbf{X}=\mathbf{x}_2)}. \end{aligned}$$

The natural logarithm of likelihood ratio is

$$\begin{aligned} \log \left( \frac{f(\theta |\mathbf{X}=\mathbf{x}_2)}{f(\theta |\mathbf{X}=\mathbf{x}_1)}\right)= & {} \log \left( \prod _g\left( \frac{P(z_g|\theta )}{1-P(z_g|\theta )}\right) ^{z_g}\left( \frac{1-P(z_g|\theta )}{P(z_g|\theta )}\right) ^{1-z_g}\frac{P(\mathbf{X}=\mathbf{x}_1)}{P(\mathbf{X}=\mathbf{x}_2)}\right) \nonumber \\= & {} \log \left( \frac{P(\mathbf{X}=\mathbf{x}_1)}{P(\mathbf{X}=\mathbf{x}_2)}\right) + \sum _g z_g \log \left( \frac{P(z_g|\theta )}{1-P(z_g|\theta )}\right) \nonumber \\&+ \sum _g (1-z_g) \log \left( \frac{1-P(z_g|\theta )}{P(z_g|\theta )}\right) \nonumber \\= & {} \log \left( \frac{P(\mathbf{X}=\mathbf{x}_1)}{P(\mathbf{X}=\mathbf{x}_2)}\right) + \sum _g z_g \log \left( \frac{P(z_g|\theta )}{1-P_g(z_g|\theta )}\right) \nonumber \\&+ \sum _g (z_g-1) \log \left( \frac{P(z_g|\theta )}{1-P(z_g|\theta )}\right) \nonumber \\= & {} \log \left( \frac{P(\mathbf{X}=\mathbf{x}_1)}{P(\mathbf{X}=\mathbf{x}_2)}\right) + \sum _g (2z_g-1) \log \left( \frac{P(z_g|\theta )}{1-P(z_g|\theta )} \right) . \end{aligned}$$
(11)

It is generally known that if

$$\begin{aligned} \frac{f(\theta _2|\mathbf{X}=\mathbf{x}_2)}{f(\theta _2|\mathbf{X}=\mathbf{x}_1)}>\frac{f(\theta _1|\mathbf{X}=\mathbf{x}_2)}{f(\theta _1|\mathbf{X}=\mathbf{x}_1)}, \end{aligned}$$

then

$$\begin{aligned} \log \left( \frac{f(\theta _2|\mathbf{X}=\mathbf{x}_2)}{f(\theta _2|\mathbf{X}=\mathbf{x}_1)}\right) >\log \left( \frac{f(\theta _1|\mathbf{X}=\mathbf{x}_2)}{f(\theta _1|\mathbf{X}=\mathbf{x}_1)}\right) . \end{aligned}$$

Now, following from (11), the likelihood ratio can be written as

$$\begin{aligned}&\log \left( \frac{P(\mathbf{X}=\mathbf{x}_1)}{P(\mathbf{X}=\mathbf{x}_2)}\right) + \sum _g (2z_g-1) \log \left( \frac{P(z_g|\theta _2)}{1-P(z_g|\theta _2)}\right) > \\&\log \left( \frac{P(\mathbf{X}=\mathbf{x}_1)}{P(\mathbf{X}=\mathbf{x}_2)}\right) + \sum _g (2z_g-1) \log \left( \frac{P(z_g|\theta _1)}{1-P(z_g|\theta _1)}\right) \\&\Downarrow \\&\sum _g (2z_g-1) \log \left( \frac{P(z_g|\theta _2)}{1-P(z_g|\theta _2)}\right) > \sum _g (2z_g-1) \log \left( \frac{P(z_g|\theta _1)}{1-P(z_g|\theta _1)}\right) \\&\Downarrow \\&\sum _g (2z_g-1) \log \left( \frac{P(z_g|\theta _2)}{1-P(z_g|\theta _2)}\right) - \sum _g (2z_g-1) \log \left( \frac{P(z_g|\theta _1)}{1-P(z_g|\theta _1)}\right) >0\\&\Downarrow \\&\sum _g (2z_g-1) \left[ \log \left( \frac{P(z_g|\theta _2)}{1-P(z_g|\theta _2)}\right) - \log \left( \frac{P(z_g|\theta _1)}{1-P(z_g|\theta _1)}\right) \right] >0\\&\Downarrow \\&\sum _g (2z_g-1) \log \left[ \frac{\left( \frac{P(z_g|\theta _2)}{1-P(z_g|\theta _2)}\right) }{ \left( \frac{P(z_g|\theta _1)}{1-P(z_g|\theta _1)}\right) }\right] >0\\&\Downarrow \\&\sum _g z_g \log \left[ \frac{\left( \frac{P(z_g|\theta _2)}{1-P(z_g|\theta _2)}\right) }{ \left( \frac{P(z_g|\theta _1)}{1-P(z_g|\theta _1)}\right) }\right] >\sum _g (1-z_g) \log \left[ \frac{\left( \frac{P(z_g|\theta _2)}{1-P(z_g|\theta _2)}\right) }{ \left( \frac{P(z_g|\theta _1)}{1-P(z_g|\theta _1)}\right) }\right] ,\\&\;\theta _2>\theta _1,\;z_+>\frac{n}{2}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zwitser, R.J., Maris, G. Ordering Individuals with Sum Scores: The Introduction of the Nonparametric Rasch Model. Psychometrika 81, 39–59 (2016). https://doi.org/10.1007/s11336-015-9481-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-015-9481-x

Keywords

Navigation